175 lines
5.1 KiB
C++
175 lines
5.1 KiB
C++
// Procedural City Generator
|
|
// Alex Huddleston
|
|
// 2016
|
|
|
|
#include <iostream>
|
|
#include <string.h>
|
|
#include <vector>
|
|
#include "../include/CompFab.h"
|
|
#include "../include/Mesh.h"
|
|
#include <math.h>
|
|
|
|
#define PI 3.14159265
|
|
|
|
void findLW(Mesh &m, double &l, double &w)
|
|
{
|
|
double minl, maxl, minw, maxw;
|
|
for(int i = 0; i < m.t.size(); i++)
|
|
{
|
|
if(m.v[i].m_x < minl)
|
|
{
|
|
minl = m.v[i].m_x;
|
|
}
|
|
if(m.v[i].m_x > maxl)
|
|
{
|
|
maxl = m.v[i].m_x;
|
|
}
|
|
if(m.v[i].m_y < minw)
|
|
{
|
|
minw = m.v[i].m_y;
|
|
}
|
|
if(m.v[i].m_y > maxw)
|
|
{
|
|
maxw = m.v[i].m_y;
|
|
}
|
|
}
|
|
l = maxl - minl;
|
|
w = maxw - minw;
|
|
}
|
|
|
|
// Calculate translation matrices and add them to the vector of translation matrices provided.
|
|
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
|
|
{
|
|
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
|
|
|
|
CompFab::Vec3 *temp = new CompFab::Vec3(-(length + spacing), -(width + spacing), 0);
|
|
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
|
|
|
|
for(int cl = 1; cl < layers; cl++)
|
|
{
|
|
*temp = CompFab::Vec3(-(length + spacing)*cl, -(width + spacing)*cl, 0);
|
|
|
|
for(int c = 0; c < cl*8; c++)
|
|
{
|
|
/*
|
|
double cosine = cos(((2*PI)/(cl*8))*c);
|
|
double sine = sin(((2*PI)/(cl*8))*c);
|
|
//
|
|
double xcoord = 1;
|
|
double angle = tan((2*PI)/(cl*8))*c;
|
|
double ycoord = 1;
|
|
if(cosine != 0)
|
|
{
|
|
ycoord = sine/cosine;
|
|
}
|
|
if(sine != 0)
|
|
{
|
|
xcoord = cosine/sine;
|
|
}
|
|
//
|
|
double x = cosine;//(sqrt(1 - (sine*sine)/2));
|
|
if(x > 0)
|
|
{
|
|
x = floor(x);
|
|
}
|
|
else
|
|
{
|
|
x = ceil(x);
|
|
}
|
|
double y = sine;//(sqrt(1-(cosine*cosine)/2));
|
|
if(y > 0)
|
|
{
|
|
y = floor(x);
|
|
}
|
|
else
|
|
{
|
|
y = ceil(x);
|
|
}
|
|
*/
|
|
*trans = CompFab::Vec3(spacing*cos(floor((c/(2*cl)))*(0.5*PI)) + length*cos(floor((c/(2*cl)))*(0.5*PI)), spacing*sin(floor((c/(2*cl)))*(0.5*PI)) + width*sin(floor((c/(2*cl)))*(0.5*PI)), 0);
|
|
*temp = *temp + *trans;
|
|
|
|
output->push_back(*temp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
temp->push_back(CompFab::Vec3(length,0,0));
|
|
temp->push_back(CompFab::Vec3(length,width,0));
|
|
temp->push_back(CompFab::Vec3(0,width,0));
|
|
temp->push_back(CompFab::Vec3(-length,width,0));
|
|
temp->push_back(CompFab::Vec3(-length,0,0));
|
|
temp->push_back(CompFab::Vec3(-length,-width,0));
|
|
temp->push_back(CompFab::Vec3(0,-width,0));
|
|
temp->push_back(CompFab::Vec3(length,-width,0));
|
|
*/
|
|
|
|
return *output;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
|
|
// Error checking.
|
|
if(argc < 3)
|
|
{
|
|
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
// Modularize this later.
|
|
double spacing = 1.0;
|
|
|
|
// Create Mesh object from file, output to manipulate from template Mesh.
|
|
Mesh *test = new Mesh(argv[1], false);
|
|
Mesh *output = new Mesh(test->v, test->t);
|
|
|
|
int layers = 10;
|
|
double l = 0, w = 0;
|
|
double *length = &l, *width = &w;
|
|
|
|
// Find dimensions for the mesh. Assumes the mesh is facing upright.
|
|
findLW(*test, *length, *width);
|
|
|
|
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
|
|
|
|
// Duplicating template, will later be replaced with a much more robust procedural generation function.
|
|
for(int i = 0; i < d.size(); i++)
|
|
{
|
|
for(int j = 0; j < test->v.size(); j++)
|
|
{
|
|
output->v.push_back(CompFab::Vec3(test->v[j] + d[i]));
|
|
}
|
|
}
|
|
|
|
// Copying needed triangle data.
|
|
for(int n = 1; n < (2*layers - 1)*(2*layers - 1); n++)
|
|
{
|
|
for(int k = 0; k < test->t.size(); k++)
|
|
{
|
|
output->t.push_back(CompFab::Vec3i(test->t[k].m_x + test->v.size()*n, test->t[k].m_y + test->v.size()*n, test->t[k].m_z + test->v.size()*n));
|
|
}
|
|
}
|
|
|
|
// Debugging
|
|
if(argc > 3)
|
|
{
|
|
if(strcmp(argv[3], "-d") == 0)
|
|
{
|
|
for(int j = 0; j < output->v.size(); j++)
|
|
{
|
|
std::cout << output->v[j].m_x << " " << output->v[j].m_y << " " << output->v[j].m_z << std::endl;
|
|
std::cout << output->t[j].m_x << " " << output->t[j].m_y << " " << output->t[j].m_z << std::endl;
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
|
|
}
|
|
}
|
|
|
|
output->save(argv[2]);
|
|
|
|
std::cout << "Success." << std::endl;
|
|
}
|