commit
ef4b170a26
3 changed files with 77 additions and 12 deletions
|
@ -1,10 +1,10 @@
|
||||||
|
|
||||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
|
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
|
||||||
|
|
||||||
project(voxelizer)
|
project(citygen)
|
||||||
|
|
||||||
file(GLOB_RECURSE HEADER_CODE ${voxelizer_SOURCE_DIR}/include/*.h)
|
file(GLOB_RECURSE HEADER_CODE ${citygen_SOURCE_DIR}/include/*.h)
|
||||||
file(GLOB_RECURSE SRC_CODE ${voxelizer_SOURCE_DIR}/source/*.cpp)
|
file(GLOB_RECURSE SRC_CODE ${citygen_SOURCE_DIR}/source/*.cpp)
|
||||||
|
|
||||||
ADD_EXECUTABLE(voxelizer ${SRC_CODE} ${HEADER_CODE})
|
ADD_EXECUTABLE(citygen ${SRC_CODE} ${HEADER_CODE})
|
||||||
|
|
||||||
|
|
|
@ -3,4 +3,4 @@
|
||||||
A C++ engine for procedural city generation by manipulating .obj models and outputing an .obj model of a city.
|
A C++ engine for procedural city generation by manipulating .obj models and outputing an .obj model of a city.
|
||||||
|
|
||||||
Use cmake file included to generate project.
|
Use cmake file included to generate project.
|
||||||
Current command line arguments required: (project directory)/data/(desired .obj model to use) output.obj
|
Usage: [executable] [template].obj output.obj [optional: -d for debugging output]
|
||||||
|
|
|
@ -7,7 +7,11 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "../include/CompFab.h"
|
#include "../include/CompFab.h"
|
||||||
#include "../include/Mesh.h"
|
#include "../include/Mesh.h"
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
#define PI 3.14159265
|
||||||
|
|
||||||
|
// A function to find the X and Y dimensions of the template obj
|
||||||
void findLW(Mesh &m, double &l, double &w)
|
void findLW(Mesh &m, double &l, double &w)
|
||||||
{
|
{
|
||||||
double minl, maxl, minw, maxw;
|
double minl, maxl, minw, maxw;
|
||||||
|
@ -23,38 +27,99 @@ void findLW(Mesh &m, double &l, double &w)
|
||||||
}
|
}
|
||||||
if(m.v[i].m_y < minw)
|
if(m.v[i].m_y < minw)
|
||||||
{
|
{
|
||||||
minw = m.v[i].m_x;
|
minw = m.v[i].m_y;
|
||||||
}
|
}
|
||||||
if(m.v[i].m_y > maxw)
|
if(m.v[i].m_y > maxw)
|
||||||
{
|
{
|
||||||
maxw = m.v[i].m_x;
|
maxw = m.v[i].m_y;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
l = maxl - minl;
|
l = maxl - minl;
|
||||||
w = maxw - minw;
|
w = maxw - minw;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Calculate translation matrices and output them as a vector of Vec3s.
|
||||||
|
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
|
||||||
|
{
|
||||||
|
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
|
||||||
|
|
||||||
|
double ls = length + spacing;
|
||||||
|
double ws = width + spacing;
|
||||||
|
|
||||||
|
// Will be used later to determine the direction of the translation matrix.
|
||||||
|
// This is used to bypass needing to create a rotation matrix.
|
||||||
|
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
|
||||||
|
double angle = 0.0;
|
||||||
|
|
||||||
|
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
|
||||||
|
|
||||||
|
// Vec3 to hold our current translation matrix.
|
||||||
|
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
|
||||||
|
|
||||||
|
// cl for current layer.
|
||||||
|
for(int cl = 1; cl < layers; cl++)
|
||||||
|
{
|
||||||
|
// Constructor used to bypass needing to create a new operator override for multiplication.
|
||||||
|
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
|
||||||
|
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
|
||||||
|
|
||||||
|
for(int c = 0; c < cl*8; c++)
|
||||||
|
{
|
||||||
|
angle = (c/(2*cl))*(0.5*PI);
|
||||||
|
*trans = CompFab::Vec3(ls*cos(angle), ws*sin(angle), 0);
|
||||||
|
*temp = *temp + *trans;
|
||||||
|
|
||||||
|
output->push_back(*temp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return *output;
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char **argv)
|
int main(int argc, char **argv)
|
||||||
{
|
{
|
||||||
unsigned int num = 16; //number of voxels (e.g. 16x16x16)
|
|
||||||
|
|
||||||
|
// Error checking.
|
||||||
if(argc < 3)
|
if(argc < 3)
|
||||||
{
|
{
|
||||||
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
|
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
|
||||||
std::exit(1);
|
std::exit(1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: Modularize these.
|
||||||
|
int layers = 10;
|
||||||
|
double spacing = 1.0;
|
||||||
|
|
||||||
|
// Create Mesh object from file, output to manipulate from template Mesh.
|
||||||
Mesh *test = new Mesh(argv[1], false);
|
Mesh *test = new Mesh(argv[1], false);
|
||||||
Mesh *output = new Mesh(test->v, test->t);
|
Mesh *output = new Mesh(test->v, test->t);
|
||||||
|
|
||||||
double l = 0, w = 0;
|
double l = 0, w = 0;
|
||||||
double *length = &l, *width = &w;
|
double *length = &l, *width = &w;
|
||||||
|
|
||||||
|
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
|
||||||
findLW(*test, *length, *width);
|
findLW(*test, *length, *width);
|
||||||
for(int i = 0; i < test->v.size(); i++)
|
|
||||||
|
// Calculate the translation matrices needed.
|
||||||
|
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
|
||||||
|
|
||||||
|
// Duplicating template, will later be replaced with a much more robust procedural generation function.
|
||||||
|
for(int i = 0; i < d.size(); i++)
|
||||||
{
|
{
|
||||||
output->v.push_back(*new CompFab::Vec3(test->v[i].m_x + *length + 1, test->v[i].m_y, test->v[i].m_z));
|
for(int j = 0; j < test->v.size(); j++)
|
||||||
|
{
|
||||||
|
output->v.push_back(CompFab::Vec3(test->v[j] + d[i]));
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copying needed triangle data.
|
||||||
|
for(int n = 1; n < pow((2*layers - 1), 2); n++)
|
||||||
|
{
|
||||||
|
int offset = test->v.size()*n;
|
||||||
for(int k = 0; k < test->t.size(); k++)
|
for(int k = 0; k < test->t.size(); k++)
|
||||||
{
|
{
|
||||||
output->t.push_back(*new CompFab::Vec3i(test->t[k].m_x + test->v.size(), test->t[k].m_y + test->v.size(), test->t[k].m_z + test->v.size()));
|
output->t.push_back(CompFab::Vec3i(test->t[k].m_x +offset, test->t[k].m_y + offset, test->t[k].m_z + offset));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Debugging
|
// Debugging
|
||||||
|
|
Reference in a new issue