Cleaned up code. Added comments. Hope they help, Jeremy.
This commit is contained in:
parent
da3889d470
commit
70dfe11124
2 changed files with 30 additions and 59 deletions
|
@ -1,10 +1,10 @@
|
|||
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
|
||||
|
||||
project(voxelizer)
|
||||
project(citygen)
|
||||
|
||||
file(GLOB_RECURSE HEADER_CODE ${voxelizer_SOURCE_DIR}/include/*.h)
|
||||
file(GLOB_RECURSE SRC_CODE ${voxelizer_SOURCE_DIR}/source/*.cpp)
|
||||
file(GLOB_RECURSE HEADER_CODE ${citygen_SOURCE_DIR}/include/*.h)
|
||||
file(GLOB_RECURSE SRC_CODE ${citygen_SOURCE_DIR}/source/*.cpp)
|
||||
|
||||
ADD_EXECUTABLE(voxelizer ${SRC_CODE} ${HEADER_CODE})
|
||||
ADD_EXECUTABLE(citygen ${SRC_CODE} ${HEADER_CODE})
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
|
||||
#define PI 3.14159265
|
||||
|
||||
// A function to find the X and Y dimensions of the template obj
|
||||
void findLW(Mesh &m, double &l, double &w)
|
||||
{
|
||||
double minl, maxl, minw, maxw;
|
||||
|
@ -37,73 +38,41 @@ void findLW(Mesh &m, double &l, double &w)
|
|||
w = maxw - minw;
|
||||
}
|
||||
|
||||
// Calculate translation matrices and add them to the vector of translation matrices provided.
|
||||
// Calculate translation matrices and output them as a vector of Vec3s.
|
||||
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
|
||||
{
|
||||
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
|
||||
|
||||
CompFab::Vec3 *temp = new CompFab::Vec3(-(length + spacing), -(width + spacing), 0);
|
||||
double ls = length + spacing;
|
||||
double ws = width + spacing;
|
||||
|
||||
// Will be used later to determine the direction of the translation matrix.
|
||||
// This is used to bypass needing to create a rotation matrix.
|
||||
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
|
||||
double angle = 0.0;
|
||||
|
||||
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
|
||||
|
||||
// Vec3 to hold our current translation matrix.
|
||||
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
|
||||
|
||||
// cl for current layer.
|
||||
for(int cl = 1; cl < layers; cl++)
|
||||
{
|
||||
*temp = CompFab::Vec3(-(length + spacing)*cl, -(width + spacing)*cl, 0);
|
||||
// Constructor used to bypass needing to create a new operator override for multiplication.
|
||||
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
|
||||
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
|
||||
|
||||
for(int c = 0; c < cl*8; c++)
|
||||
{
|
||||
/*
|
||||
double cosine = cos(((2*PI)/(cl*8))*c);
|
||||
double sine = sin(((2*PI)/(cl*8))*c);
|
||||
//
|
||||
double xcoord = 1;
|
||||
double angle = tan((2*PI)/(cl*8))*c;
|
||||
double ycoord = 1;
|
||||
if(cosine != 0)
|
||||
{
|
||||
ycoord = sine/cosine;
|
||||
}
|
||||
if(sine != 0)
|
||||
{
|
||||
xcoord = cosine/sine;
|
||||
}
|
||||
//
|
||||
double x = cosine;//(sqrt(1 - (sine*sine)/2));
|
||||
if(x > 0)
|
||||
{
|
||||
x = floor(x);
|
||||
}
|
||||
else
|
||||
{
|
||||
x = ceil(x);
|
||||
}
|
||||
double y = sine;//(sqrt(1-(cosine*cosine)/2));
|
||||
if(y > 0)
|
||||
{
|
||||
y = floor(x);
|
||||
}
|
||||
else
|
||||
{
|
||||
y = ceil(x);
|
||||
}
|
||||
*/
|
||||
*trans = CompFab::Vec3(spacing*cos(floor((c/(2*cl)))*(0.5*PI)) + length*cos(floor((c/(2*cl)))*(0.5*PI)), spacing*sin(floor((c/(2*cl)))*(0.5*PI)) + width*sin(floor((c/(2*cl)))*(0.5*PI)), 0);
|
||||
angle = (c/(2*cl))*(0.5*PI);
|
||||
*trans = CompFab::Vec3(ls*cos(angle), ws*sin(angle), 0);
|
||||
*temp = *temp + *trans;
|
||||
|
||||
output->push_back(*temp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
temp->push_back(CompFab::Vec3(length,0,0));
|
||||
temp->push_back(CompFab::Vec3(length,width,0));
|
||||
temp->push_back(CompFab::Vec3(0,width,0));
|
||||
temp->push_back(CompFab::Vec3(-length,width,0));
|
||||
temp->push_back(CompFab::Vec3(-length,0,0));
|
||||
temp->push_back(CompFab::Vec3(-length,-width,0));
|
||||
temp->push_back(CompFab::Vec3(0,-width,0));
|
||||
temp->push_back(CompFab::Vec3(length,-width,0));
|
||||
*/
|
||||
|
||||
return *output;
|
||||
}
|
||||
|
||||
|
@ -117,20 +86,21 @@ int main(int argc, char **argv)
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
// Modularize this later.
|
||||
// TODO: Modularize these.
|
||||
int layers = 10;
|
||||
double spacing = 1.0;
|
||||
|
||||
// Create Mesh object from file, output to manipulate from template Mesh.
|
||||
Mesh *test = new Mesh(argv[1], false);
|
||||
Mesh *output = new Mesh(test->v, test->t);
|
||||
|
||||
int layers = 10;
|
||||
double l = 0, w = 0;
|
||||
double *length = &l, *width = &w;
|
||||
|
||||
// Find dimensions for the mesh. Assumes the mesh is facing upright.
|
||||
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
|
||||
findLW(*test, *length, *width);
|
||||
|
||||
// Calculate the translation matrices needed.
|
||||
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
|
||||
|
||||
// Duplicating template, will later be replaced with a much more robust procedural generation function.
|
||||
|
@ -143,11 +113,12 @@ int main(int argc, char **argv)
|
|||
}
|
||||
|
||||
// Copying needed triangle data.
|
||||
for(int n = 1; n < (2*layers - 1)*(2*layers - 1); n++)
|
||||
for(int n = 1; n < pow((2*layers - 1), 2); n++)
|
||||
{
|
||||
int offset = test->v.size()*n;
|
||||
for(int k = 0; k < test->t.size(); k++)
|
||||
{
|
||||
output->t.push_back(CompFab::Vec3i(test->t[k].m_x + test->v.size()*n, test->t[k].m_y + test->v.size()*n, test->t[k].m_z + test->v.size()*n));
|
||||
output->t.push_back(CompFab::Vec3i(test->t[k].m_x +offset, test->t[k].m_y + offset, test->t[k].m_z + offset));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Reference in a new issue