Merge pull request #1 from shadow8t4/alexdev

Alexdev
This commit is contained in:
Alex Huddleston 2016-11-27 03:17:28 -06:00 committed by GitHub Enterprise
commit ef4b170a26
3 changed files with 77 additions and 12 deletions

View file

@ -1,10 +1,10 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
project(voxelizer)
project(citygen)
file(GLOB_RECURSE HEADER_CODE ${voxelizer_SOURCE_DIR}/include/*.h)
file(GLOB_RECURSE SRC_CODE ${voxelizer_SOURCE_DIR}/source/*.cpp)
file(GLOB_RECURSE HEADER_CODE ${citygen_SOURCE_DIR}/include/*.h)
file(GLOB_RECURSE SRC_CODE ${citygen_SOURCE_DIR}/source/*.cpp)
ADD_EXECUTABLE(voxelizer ${SRC_CODE} ${HEADER_CODE})
ADD_EXECUTABLE(citygen ${SRC_CODE} ${HEADER_CODE})

View file

@ -3,4 +3,4 @@
A C++ engine for procedural city generation by manipulating .obj models and outputing an .obj model of a city.
Use cmake file included to generate project.
Current command line arguments required: (project directory)/data/(desired .obj model to use) output.obj
Usage: [executable] [template].obj output.obj [optional: -d for debugging output]

View file

@ -7,7 +7,11 @@
#include <vector>
#include "../include/CompFab.h"
#include "../include/Mesh.h"
#include <math.h>
#define PI 3.14159265
// A function to find the X and Y dimensions of the template obj
void findLW(Mesh &m, double &l, double &w)
{
double minl, maxl, minw, maxw;
@ -23,38 +27,99 @@ void findLW(Mesh &m, double &l, double &w)
}
if(m.v[i].m_y < minw)
{
minw = m.v[i].m_x;
minw = m.v[i].m_y;
}
if(m.v[i].m_y > maxw)
{
maxw = m.v[i].m_x;
maxw = m.v[i].m_y;
}
}
l = maxl - minl;
w = maxw - minw;
}
// Calculate translation matrices and output them as a vector of Vec3s.
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
{
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
double ls = length + spacing;
double ws = width + spacing;
// Will be used later to determine the direction of the translation matrix.
// This is used to bypass needing to create a rotation matrix.
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
double angle = 0.0;
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
// Vec3 to hold our current translation matrix.
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
// cl for current layer.
for(int cl = 1; cl < layers; cl++)
{
// Constructor used to bypass needing to create a new operator override for multiplication.
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
for(int c = 0; c < cl*8; c++)
{
angle = (c/(2*cl))*(0.5*PI);
*trans = CompFab::Vec3(ls*cos(angle), ws*sin(angle), 0);
*temp = *temp + *trans;
output->push_back(*temp);
}
}
return *output;
}
int main(int argc, char **argv)
{
unsigned int num = 16; //number of voxels (e.g. 16x16x16)
// Error checking.
if(argc < 3)
{
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
std::exit(1);
}
// TODO: Modularize these.
int layers = 10;
double spacing = 1.0;
// Create Mesh object from file, output to manipulate from template Mesh.
Mesh *test = new Mesh(argv[1], false);
Mesh *output = new Mesh(test->v, test->t);
double l = 0, w = 0;
double *length = &l, *width = &w;
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
findLW(*test, *length, *width);
for(int i = 0; i < test->v.size(); i++)
// Calculate the translation matrices needed.
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
// Duplicating template, will later be replaced with a much more robust procedural generation function.
for(int i = 0; i < d.size(); i++)
{
output->v.push_back(*new CompFab::Vec3(test->v[i].m_x + *length + 1, test->v[i].m_y, test->v[i].m_z));
for(int j = 0; j < test->v.size(); j++)
{
output->v.push_back(CompFab::Vec3(test->v[j] + d[i]));
}
}
for(int k = 0; k < test->t.size(); k++)
// Copying needed triangle data.
for(int n = 1; n < pow((2*layers - 1), 2); n++)
{
output->t.push_back(*new CompFab::Vec3i(test->t[k].m_x + test->v.size(), test->t[k].m_y + test->v.size(), test->t[k].m_z + test->v.size()));
int offset = test->v.size()*n;
for(int k = 0; k < test->t.size(); k++)
{
output->t.push_back(CompFab::Vec3i(test->t[k].m_x +offset, test->t[k].m_y + offset, test->t[k].m_z + offset));
}
}
// Debugging