Cleaned up code. Added comments. Hope they help, Jeremy.

This commit is contained in:
Alex 2016-11-27 02:52:25 -06:00
parent da3889d470
commit 70dfe11124
2 changed files with 30 additions and 59 deletions

View file

@ -1,10 +1,10 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.8) CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
project(voxelizer) project(citygen)
file(GLOB_RECURSE HEADER_CODE ${voxelizer_SOURCE_DIR}/include/*.h) file(GLOB_RECURSE HEADER_CODE ${citygen_SOURCE_DIR}/include/*.h)
file(GLOB_RECURSE SRC_CODE ${voxelizer_SOURCE_DIR}/source/*.cpp) file(GLOB_RECURSE SRC_CODE ${citygen_SOURCE_DIR}/source/*.cpp)
ADD_EXECUTABLE(voxelizer ${SRC_CODE} ${HEADER_CODE}) ADD_EXECUTABLE(citygen ${SRC_CODE} ${HEADER_CODE})

View file

@ -11,6 +11,7 @@
#define PI 3.14159265 #define PI 3.14159265
// A function to find the X and Y dimensions of the template obj
void findLW(Mesh &m, double &l, double &w) void findLW(Mesh &m, double &l, double &w)
{ {
double minl, maxl, minw, maxw; double minl, maxl, minw, maxw;
@ -37,73 +38,41 @@ void findLW(Mesh &m, double &l, double &w)
w = maxw - minw; w = maxw - minw;
} }
// Calculate translation matrices and add them to the vector of translation matrices provided. // Calculate translation matrices and output them as a vector of Vec3s.
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width) std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
{ {
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>(); std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
CompFab::Vec3 *temp = new CompFab::Vec3(-(length + spacing), -(width + spacing), 0); double ls = length + spacing;
double ws = width + spacing;
// Will be used later to determine the direction of the translation matrix.
// This is used to bypass needing to create a rotation matrix.
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
double angle = 0.0;
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
// Vec3 to hold our current translation matrix.
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0); CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
// cl for current layer.
for(int cl = 1; cl < layers; cl++) for(int cl = 1; cl < layers; cl++)
{ {
*temp = CompFab::Vec3(-(length + spacing)*cl, -(width + spacing)*cl, 0); // Constructor used to bypass needing to create a new operator override for multiplication.
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
for(int c = 0; c < cl*8; c++) for(int c = 0; c < cl*8; c++)
{ {
/* angle = (c/(2*cl))*(0.5*PI);
double cosine = cos(((2*PI)/(cl*8))*c); *trans = CompFab::Vec3(ls*cos(angle), ws*sin(angle), 0);
double sine = sin(((2*PI)/(cl*8))*c);
//
double xcoord = 1;
double angle = tan((2*PI)/(cl*8))*c;
double ycoord = 1;
if(cosine != 0)
{
ycoord = sine/cosine;
}
if(sine != 0)
{
xcoord = cosine/sine;
}
//
double x = cosine;//(sqrt(1 - (sine*sine)/2));
if(x > 0)
{
x = floor(x);
}
else
{
x = ceil(x);
}
double y = sine;//(sqrt(1-(cosine*cosine)/2));
if(y > 0)
{
y = floor(x);
}
else
{
y = ceil(x);
}
*/
*trans = CompFab::Vec3(spacing*cos(floor((c/(2*cl)))*(0.5*PI)) + length*cos(floor((c/(2*cl)))*(0.5*PI)), spacing*sin(floor((c/(2*cl)))*(0.5*PI)) + width*sin(floor((c/(2*cl)))*(0.5*PI)), 0);
*temp = *temp + *trans; *temp = *temp + *trans;
output->push_back(*temp); output->push_back(*temp);
} }
} }
/*
temp->push_back(CompFab::Vec3(length,0,0));
temp->push_back(CompFab::Vec3(length,width,0));
temp->push_back(CompFab::Vec3(0,width,0));
temp->push_back(CompFab::Vec3(-length,width,0));
temp->push_back(CompFab::Vec3(-length,0,0));
temp->push_back(CompFab::Vec3(-length,-width,0));
temp->push_back(CompFab::Vec3(0,-width,0));
temp->push_back(CompFab::Vec3(length,-width,0));
*/
return *output; return *output;
} }
@ -117,20 +86,21 @@ int main(int argc, char **argv)
std::exit(1); std::exit(1);
} }
// Modularize this later. // TODO: Modularize these.
int layers = 10;
double spacing = 1.0; double spacing = 1.0;
// Create Mesh object from file, output to manipulate from template Mesh. // Create Mesh object from file, output to manipulate from template Mesh.
Mesh *test = new Mesh(argv[1], false); Mesh *test = new Mesh(argv[1], false);
Mesh *output = new Mesh(test->v, test->t); Mesh *output = new Mesh(test->v, test->t);
int layers = 10;
double l = 0, w = 0; double l = 0, w = 0;
double *length = &l, *width = &w; double *length = &l, *width = &w;
// Find dimensions for the mesh. Assumes the mesh is facing upright. // Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
findLW(*test, *length, *width); findLW(*test, *length, *width);
// Calculate the translation matrices needed.
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width); std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
// Duplicating template, will later be replaced with a much more robust procedural generation function. // Duplicating template, will later be replaced with a much more robust procedural generation function.
@ -143,11 +113,12 @@ int main(int argc, char **argv)
} }
// Copying needed triangle data. // Copying needed triangle data.
for(int n = 1; n < (2*layers - 1)*(2*layers - 1); n++) for(int n = 1; n < pow((2*layers - 1), 2); n++)
{ {
int offset = test->v.size()*n;
for(int k = 0; k < test->t.size(); k++) for(int k = 0; k < test->t.size(); k++)
{ {
output->t.push_back(CompFab::Vec3i(test->t[k].m_x + test->v.size()*n, test->t[k].m_y + test->v.size()*n, test->t[k].m_z + test->v.size()*n)); output->t.push_back(CompFab::Vec3i(test->t[k].m_x +offset, test->t[k].m_y + offset, test->t[k].m_z + offset));
} }
} }