This repository has been archived on 2025-04-11. You can view files and clone it, but cannot push or open issues or pull requests.
proceduralcity/source/main.cpp
martin_837013 a615b6bcef test
2016-12-05 11:01:12 -06:00

177 lines
5 KiB
C++

// Procedural City Generator
// Alex Huddleston
// 2016
#include <iostream>
#include <string.h>
#include <vector>
#include "../include/CompFab.h"
#include "../include/Mesh.h"
#include "../include/ppm.h"
#include "../include/PerlinNoise.h"
#include <math.h>
#define PI 3.14159265
double distanceA2B(double ax, double ay, double bx, double by){
return sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay));
}
double jerfunc(double x, double y, PerlinNoise pnoise){
double n = 0;
double m = 0;
//perlin noise
n = 20 * pnoise.noise(x,y,0.8);
n = n - floor(n);
//Central distrobution
//distance from point to center
m = distanceA2B(x,y,0.5,0.5);
return (m*0.15)+(n*0.85);
}
//A function to find the X and Y dimensions of the template obj
void findLW(Mesh &m, double &l, double &w)
{
double minl, maxl, minw, maxw;
for(int i = 0; i < m.t.size(); i++)
{
if(m.v[i].m_x < minl)
{
minl = m.v[i].m_x;
}
if(m.v[i].m_x > maxl)
{
maxl = m.v[i].m_x;
}
if(m.v[i].m_y < minw)
{
minw = m.v[i].m_y;
}
if(m.v[i].m_y > maxw)
{
maxw = m.v[i].m_y;
}
}
l = maxl - minl;
w = maxw - minw;
}
// Calculate translation matrices and output them as a vector of Vec3s.
std::vector<CompFab::Vec3> createVec3d(int layers, double spacing, double length, double width)
{
std::vector<CompFab::Vec3> *output = new std::vector<CompFab::Vec3>();
double ls = length + spacing;
double ws = width + spacing;
// Will be used later to determine the direction of the translation matrix.
// This is used to bypass needing to create a rotation matrix.
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
double angle = 0.0;
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
// Vec3 to hold our current translation matrix.
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
CompFab::Vec3 *coord = new CompFab::Vec3(0.5,0.5,0);
// cl for current layer.
for(int cl = 1; cl < layers; cl++)
{
// Constructor used to bypass needing to create a new operator override for multiplication.
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
for(int c = 0; c < cl*8; c++)
{
angle = (c/(2*cl))*(0.5*PI);
*trans = CompFab::Vec3(ls*cos(angle), ws*sin(angle), 0);
*temp = *temp + *trans;
output->push_back(*temp);
*coord = *coord + mmult(trans, Vec3(1/(layers*2-1)/2),1/(layers*2-1)/2,0);
*temp=mmult(temp,Vec3(1,1,n));
}
}
return *output;
}
int main(int argc, char **argv)
{
// Error checking.
if(argc < 3)
{
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
std::exit(1);
}
// TODO: Modularize these.
int layers = 10;
double spacing = 1.0;
// Create Mesh object from file, output to manipulate from template Mesh.
Mesh *test = new Mesh(argv[1], false);
Mesh *output = new Mesh(test->v, test->t);
double l = 0, w = 0;
double *length = &l, *width = &w;
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
findLW(*test, *length, *width);
// Calculate the translation matrices needed.
std::vector<CompFab::Vec3> d = createVec3d(layers, spacing, *length, *width);
// Duplicating template, will later be replaced with a much more robust procedural generation function.
for(int i = 0; i < d.size(); i++)
{
for(int j = 0; j < test->v.size(); j++)
{
output->v.push_back(CompFab::Vec3(test->v[j] + d[i]));
}
}
// Copying needed triangle data.
for(int n = 1; n < pow((2*layers - 1), 2); n++)
{
int offset = test->v.size()*n;
for(int k = 0; k < test->t.size(); k++)
{
output->t.push_back(CompFab::Vec3i(test->t[k].m_x +offset, test->t[k].m_y + offset, test->t[k].m_z + offset));
}
}
// Debugging
if(argc > 3)
{
// {
for(int j = 0; j < output->v.size(); j++)
{
std::cout << output->v[j].m_x << " " << output->v[j].m_y << " " << output->v[j].m_z << std::endl;
std::cout << output->t[j].m_x << " " << output->t[j].m_y << " " << output->t[j].m_z << std::endl;
std::cout << std::endl;
}
}
else
{
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
}
}
output->save(argv[2]);
std::cout << "Success." << std::endl;
}