Modularized grid mode. Updated help dialogue.

This commit is contained in:
Alex 2016-11-30 16:21:08 -06:00
parent db17de29f4
commit 59a9be347e

View file

@ -47,18 +47,17 @@ std::vector<CompFab::Vec3> createVec3d(std::vector<CompFab::Vec3> &t, int layers
double ws = width + spacing;
// Will be used later to determine the direction of the translation matrix.
// This is used to bypass needing to create a rotation matrix.
// Should consider doing so anyway to speed up process, use less memory, and add modularization.
double angle = 0.0;
CompFab::Vec3 *temp = new CompFab::Vec3(-ls, -ws, 0);
// Vec3 to hold our current translation matrix.
CompFab::Vec3 *trans = new CompFab::Vec3(0, spacing, 0);
CompFab::Vec3 *trans = new CompFab::Vec3(ls, ws, 0);
//Vec3 to hold our current height multiplier.
//Vec3 to hold our current height multiplication materx.
CompFab::Vec3 *mult = new CompFab::Vec3(1,1,1);
//push_back initial templat's mesh, multiplied by the height multiplication matrix.
for(int i = 0; i < t.size(); i++)
{
output->push_back(mmult(*mult, t[i]));
@ -67,10 +66,11 @@ std::vector<CompFab::Vec3> createVec3d(std::vector<CompFab::Vec3> &t, int layers
// cl for current layer.
for(int cl = 1; cl < layers; cl++)
{
// Constructor used to bypass needing to create a new operator override for multiplication.
// Should also consider doing so anyway to speed up process, use less memory, and add modularization.
// Constructor used to re-initialize temp.
*temp = CompFab::Vec3(-ls*cl, -ws*cl, 0);
mult->m_z = 1.0 - (cl*1.0)/layers;
// Used to change the multiplciation matrix per layer.
mult->m_z = 1.0/(cl +1);
for(int c = 0; c < cl*8; c++)
@ -110,36 +110,44 @@ int main(int argc, char **argv)
// Error checking.
if(argc < 3)
{
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
std::cout << "Usage: [executable] [template].obj output.obj [mode (-g, etc.)] [optional: -d for debugging output]" << std::endl;
std::exit(1);
}
// TODO: Modularize these.
int layers = 10;
double spacing = 0.5;
// Create Mesh object from file, output to manipulate from template Mesh.
Mesh *test = new Mesh(argv[1], false);
double l = 0, w = 0;
double *length = &l, *width = &w;
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
findLW(*test, *length, *width);
// Calculate the translation matrices needed and apply them.
std::vector<CompFab::Vec3> vv = createVec3d(test->v, layers, spacing, *length, *width);
// Copying needed triangle data.
std::vector<CompFab::Vec3i> tt = createVec3id(test->t, test->v, layers);
// Using contructor to create new output Mesh.
Mesh *output = new Mesh(vv, tt);
// Initialization of needed output variables.
std::vector<CompFab::Vec3> vv;
std::vector<CompFab::Vec3i> tt;
Mesh *output = new Mesh();
// Debugging
if(argc > 3)
{
if(strcmp(argv[3], "-d") == 0)
if(strcmp(argv[3], "-g") == 0 || strcmp(argv[3], "-d") == 0)
{
// TODO: Modularize these.
int layers = 10;
double spacing = 1;
// Create Mesh object from file, output to manipulate from template Mesh.
Mesh *test = new Mesh(argv[1], false);
double l = 0, w = 0;
double *length = &l, *width = &w;
// Find the X and Y dimensions for the mesh. Assumes the mesh is facing upright.
findLW(*test, *length, *width);
// Calculate the translation matrices needed and apply them.
vv = createVec3d(test->v, layers, spacing, *length, *width);
// Copying needed triangle data.
tt = createVec3id(test->t, test->v, layers);
// Using contructor to create new output Mesh.
*output = Mesh(vv, tt);
}
if(strcmp(argv[argc - 1], "-d") == 0)
{
for(int j = 0; j < output->v.size(); j++)
{
@ -151,10 +159,6 @@ int main(int argc, char **argv)
std::cout << output->t[k].m_x << " " << output->t[k].m_y << " " << output->t[k].m_z << std::endl;
}
}
else
{
std::cout << "Usage: [executable] [template].obj output.obj [optional: -d for debugging output]" << std::endl;
}
}
output->save(argv[2]);