
Statement of Problem 
In order to more closely estimate the number of moves that are required from a given game 
board state of a 16-piece puzzle to the solution, we construct a neural network. While there are 
other, less complicated methods of calculating an estimate answer of how many moves are left, 
such as the Manhattan distance method, which we will be using later to weight against the 
accuracy of our neural network’s predictions, creating a more accurate estimation system would 
prove to be much more useful. The significance of a more accurate estimator could lead to the 
development of more accurate path estimators in general, leading to more feasible solutions to 
otherwise infeasible problems such as the traveling salesman problem. 

Restrictions and Limitations 
As stated in the project documentation itself, creating a neural network for estimating the 
number of moves left in a 16 piece puzzle is not a good use of a neural network. On top of this 
basic limitation of neural networks in general, it should be noted that evaluating the neural 
network’s estimations is only possible for states in which we already know the minimum possible 
moves to solve. In this sense, rather than trying to bridge between the P and NP problem 
spaces (as finding the minimum possible moves for an n-piece puzzle is in the NP space), we 
are merely creating an estimator that mimic such a bridge for this specific type of puzzle, which 
can only work for up to 28 moves in our case. 

Approach 
I approached this problem using Python version 3. The neural network was constructed using 
the Google TensorFlow backend libraries and Keras. Numpy was also used for some additional 
computational functions.  

Layers 
The neural network was constructed with 1 input layer, 1 output layer, and 2 hidden layers. Here 
is a short outline of the layer structure: 

1. 240 input neurons, using hyperbolic tangent. 
2. 120 neurons, hyperbolic tangent. 
3. 60 neurons, hyperbolic tangent. 
4. 29 output neurons, sigmoid for our output. 



Experiments 
When experimenting with the network, I kept the layers the same for all tests. I wanted to make 
sure whatever I was doing wasn’t dependent on the overall structure of the network itself. I used 
Stochastic Gradient Descent as my optimizer and Mean Squared Error for my loss function. 
 
In training the neural network, I fed a batch of 1000 states for each file (in which I either fed 
1000 states or all the states in the current file if there were less. I then experimented with 
varying epochs / batch sizes. 

Sample Run 
Here are some sample runs of the program running both through Jupyter’s HTTP server 
interface and through VPN on the compute server on a plain Python script. 



Jupyter 

 



Python on compute.cse.tamu.edu 

 



Results & Analysis 
First, I ran a test on the default input of my network. I used 1000 states or all states for each file, 
5 epochs, and 1000 in a batch. I received varying results each time I ran the program, with very 
little consistency. On testing predictions, I would receive higher “improvement values” (we define 
percentage improvement in the project documentation to be percentage closer to actual number 
of moves versus the manhattan distance estimate) the farther away I got from the higher 
number estimates. 
 
I continued to run tests, changing epochs and batch sizes. In one of my final tests, I changed 
epochs to 8 and batch size to 2000, here is a full list of the data results from that evaluation: 
 
11 
1938/1938 [==============================] - 0s 2us/step 
Percentage possible improvement:  131.991744066 
loss 0.167936483834 
acc 0.0175438595376 
 
12 
5808/5808 [==============================] - 0s 2us/step 
Percentage possible improvement:  153.83953168 
loss 0.169155473757 
acc 0.0118801652392 
 
13 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  91.605 
loss 0.167931690812 
acc 0.0303999996744 
 
14 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  115.414166667 
loss 0.166890135407 
acc 0.0186000001617 
 
15 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  98.1758333333 
loss 0.168728539348 



acc 0.0131000000983 
 
16 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  34.4588333333 
loss 0.168766576052 
acc 0.010100000212 
 
17 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -53.8332380952 
loss 0.17060739994 
acc 0.0102000000887 
 
18 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -0.692416666667 
loss 0.169354042411 
acc 0.00440000006929 
 
19 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -29.2496706349 
loss 0.171234123409 
acc 0.00790000013076 
 
20 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  23.3521944444 
loss 0.170418299735 
acc 0.007200000179 
 
21 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -31.1126269841 
loss 0.171738886833 
acc 0.0229000000283 
 
22 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  9.1381010101 
loss 0.173329897225 



acc 0.00890000014333 
 
23 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -43.6177330447 
loss 0.174675036967 
acc 0.0130999999936 
 
24 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -3.36664033189 
loss 0.176320441067 
acc 0.0120000001742 
 
25 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  -1.81612357087 
loss 0.177039775252 
acc 0.00450000000419 
 
26 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  33.477459596 
loss 0.174290961027 
acc 0.017100000754 
 
27 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  4.31057944833 
loss 0.173010015488 
acc 0.00779999999795 
 
28 
10000/10000 [==============================] - 0s 2us/step 
Percentage possible improvement:  30.1904823787 
loss 0.174648806453 
acc 0.024500000081 
 
Note that I only test 10,000 states, this is to cut down on computation time. 



Conclusions 
The current model of the neural network that is presented ranges from unstable to almost 
unusable in a practical sense. It should be noted that due to the nature of the neurons being 
weighted differently, it would make sense that the connections we trained more often (eg: those 
with more states, such as the higher number moves left states) would be more influential during 
predictions. However, it’s worth noting that even when fixing this issue, possibly by manually 
weighting the tests per file on something like a 1/1000 scalar, it would not fix the overall issue of 
the inconsistency of the network overall. 

Future Research 
As stated in the conclusion, it would improve the network to have some 1/n type weighting 
scheme during training. Additionally, it was brought up to me by a colleague that a possible 
reworking of the structure of the layers could prove to be helpful, as the input layer could instead 
take 15 16-bit inputs telling the current tile rather than a 240 neuron layer spread out for each 
possible occurrence of any 0 to 15 tile piece. 

Instructions on running (README) 
If you are running the program through the compute.cse.tamu.edu servers, you will need to 
make sure you run using the command: 
 
python3 neural_network.py 
 
In order to install the necessary libraries to run the program, you will also need to run these 
commands: 
 
wget "https://bootstrap.pypa.io/get-pip.py" 
python3 get-pip.py --user 
python3 -m pip install --user tensorflow 
python3 -m pip install --user keras 
python3 -m pip install --user numpy 
 
If you are using a virtual desktop or are logged in on campus somewhere, you should be able to 
also view the Jupyter Notebook that is included, which has more detailed comments. You will 
just need to install an additional package. 
 



 
python3 -m pip install --user jupyter 
python3 -m notebook nn_puzzle_solver.ipynb 
 
In case you are unable to access the notebook, I’ve included an HTTP version of the notebook 
as well. 

The Program 
 

from functools import reduce 
import numpy as np 
from keras.models import Sequential 
from keras.layers import Dense 
from os.path import join 
 

# Used to format our input binary state. 
 

def format_input(acc, elem): 
hex_elem = (elem - (elem >> 4 << 4)) 
for x in range(16): 

 if x == hex_elem: 
 acc.append(1) 

 else: 
 acc.append(0) 

hex_elem = (elem >> 4) % 16 
for x in range(16): 

 if x == hex_elem: 
 acc.append(1) 

 else: 
 acc.append(0) 

return acc 
 

# Calculate Manhattan distance between two points. 
 

def man_dist(x, y): 
for a, b in zip(x, y): 

 a_one, a_two = x 
 b_one, b_two = y 
 

return (abs(a_one - b_one) + abs(a_two - b_two)) 



 

# Calculate Manhattan distance between each set of two points in a list. 
 

def man_dist_state(x, y): 
return sum(man_dist(a, b) for a, b in zip(x, y)) 

 

# Used to format the positions we parsed from our binary input. 
 

def format_pos(acc, elem): 
hex_elem = (elem[1] - (elem[1] >> 4 << 4)) 
if hex_elem == 0: 

 acc.append((hex_elem, (3,3))) 
else: 

 acc.append((hex_elem, ((15 - ((elem[0]) * 2)) % 4,int((15 - 
((elem[0]) * 2)) / 4)))) 

hex_elem = (elem[1] >> 4) % 16 
if hex_elem == 0: 

 acc.append((hex_elem, (3,3))) 
else: 

 acc.append((hex_elem, ((15 - ((elem[0]) * 2 + 1)) % 4,int((15 - 
((elem[0]) * 2 + 1)) / 4)))) 
 

return acc 
 

# The title of this function is slightly misleading. 
# I'm simply generating a list of positions that each 
# puzzle piece in the current parsed state SHOULD be at. 
# I organize this in order of the pieces as they were 
# parsed so the two lists line up perfectly. 
 

def generate_pos(acc, elem): 
if(elem[0] == 0): 

 acc.append((3,3)) 

else: 
 acc.append((((elem[0] - 1) % 4), (int((elem[0] - 1)/4)))) 
 

return acc 
 

# Used to format our ending Manhattan distance into a format 
# that can be compared with our 29 output neurons. 
 

def format_man_dist(elem): 



acc = [] 
for x in range(28, -1, -1): 

 if x == elem: 
 acc.append(1) 

 else: 
 acc.append(0) 

return acc 
 

 

target = [] 
 

for i in range(29): 
filename = join('/pub/faculty_share/daugher/datafiles/data/' + str(i) 

+ 'states.bin') 
 

# Debugging to print the current file from which states are being 
parsed. 

#print(i) 

temp = [] 
 

with open(filename, 'rb') as f: 
 data = f.read(8) 
 counter = 0 
 

 while(data and counter < 2000): 
 temp.append(format_man_dist(i)) 

 

 data = f.read(8) 
 counter += 1 
 

 target.append(temp) 

 

#print(target[28][500]) 

 

# Sets up a Sequential model, Sequential is all 
# that should need to be used for this project, 
# considering that it will only be dealing with 
# a linear stack of layers of neurons. 
 

model = Sequential() 
 

# Adding layers to the model. 



 

model.add(Dense(units=240, activation='tanh', input_dim=240)) 
model.add(Dense(units=120, activation='tanh')) 
model.add(Dense(units=60, activation='tanh')) 
model.add(Dense(units=29, activation='sigmoid')) 
 

# Configure the learning process. 
 

model.compile(optimizer='sgd', 
 loss='mean_squared_error', 
 metrics=['accuracy']) 
 

 

for i in range(29): 
filename = join('/pub/faculty_share/daugher/datafiles/data/' + str(i) 

+ 'states.bin') 
 

# Debugging to print the current file from which states are being 
parsed. 

print(i) 

 

with open(filename, 'rb') as f: 
 data = f.read(8) 
 counter = 0 
 training = [] 
 

 while(data and counter < 2000): 
 bin_data = reduce(format_input, list(data), []) 
 bin_data.reverse() 

 bin_data = bin_data[16:] 
 

 training.append(bin_data) 

 

 data = f.read(8) 
 counter += 1 
 

 #print(training[0]) 

# Train the network. 
 

model.fit(np.array(training), np.array(target[i]), epochs=8, 
batch_size=2000) 

#model.train_on_batch(np.array(temp), np.array(target)) 



 

# Used for testing data 
 

for i in range(11, 29): 
filename = join('/pub/faculty_share/daugher/datafiles/data/', str(i) 

+ 'states.bin') 
 

print(i) 

 

with open(filename, 'rb') as f: 
 

 for i in range(2000): 
 data = f.read(8) 
 

 data = f.read(8) 
 

 counter = 0 
 

 testing = [] 
 

 testing_target = [] 
 

 while(data and counter < 10000): 
 bin_data = reduce(format_input, list(data), []) 
 bin_data.reverse() 

 bin_data = bin_data[16:] 
 

 testing.append(bin_data) 

 

 pos_data = reduce(format_pos, enumerate(list(data)), []) 
 pos_data.reverse() 

 pos_data = pos_data[1:] 
 

 state_pos = [] 
 

 for p in pos_data: 
 state_pos.append(p[1]) 

 

 testing_target_pos = reduce(generate_pos, pos_data, []) 
 

 testing_target.append(format_man_dist(man_dist_state(state_pos, 

testing_target_pos))) 



 

 counter += 1 
 data = f.read(8) 
 

 

 # Evaluate accuracy 
 

 loss_and_metrics = 
model.evaluate(np.array(testing),np.array(testing_target), batch_size=1000) 
 

 # Generating predictions: 
 

 predictions = model.predict(np.array(testing), batch_size=1000) 
 

 output = [] 
 

 for p in range(len(predictions)): 
 if np.argmax(testing_target[p]) < 18: 
 output.append(100*((18 - (28 - 
np.argmax(predictions[p]))) / (18 - np.argmax(testing_target[p])))) 
 else: 
 output.append(0) 

 

 #for i in range(len(output)): 
 # print(output[i]) 

 

 print("Percentage possible improvement: ", np.array(output).mean()) 
 

 print(model.metrics_names[0], loss_and_metrics[0]) 
 

 print(model.metrics_names[1], loss_and_metrics[1]) 
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