Fix this indention
This commit is contained in:
parent
fef852dbc7
commit
ae19d80d7d
1 changed files with 47 additions and 43 deletions
|
@ -81,7 +81,7 @@ def format_man_dist(elem):
|
||||||
target = []
|
target = []
|
||||||
|
|
||||||
for i in range(29):
|
for i in range(29):
|
||||||
filename = join('data', str(i) + '.bin')
|
filename = join('/pub/faculty_share/daugher/datafiles/data/' + str(i) + 'states.bin')
|
||||||
|
|
||||||
# Debugging to print the current file from which states are being parsed.
|
# Debugging to print the current file from which states are being parsed.
|
||||||
#print(i)
|
#print(i)
|
||||||
|
@ -91,7 +91,7 @@ for i in range(29):
|
||||||
data = f.read(8)
|
data = f.read(8)
|
||||||
counter = 0
|
counter = 0
|
||||||
|
|
||||||
while(data and counter < 1000):
|
while(data and counter < 2000):
|
||||||
temp.append(format_man_dist(i))
|
temp.append(format_man_dist(i))
|
||||||
|
|
||||||
data = f.read(8)
|
data = f.read(8)
|
||||||
|
@ -123,7 +123,7 @@ model.compile(optimizer='sgd',
|
||||||
|
|
||||||
|
|
||||||
for i in range(29):
|
for i in range(29):
|
||||||
filename = join('data', str(i) + '.bin')
|
filename = join('/pub/faculty_share/daugher/datafiles/data/' + str(i) + 'states.bin')
|
||||||
|
|
||||||
# Debugging to print the current file from which states are being parsed.
|
# Debugging to print the current file from which states are being parsed.
|
||||||
print(i)
|
print(i)
|
||||||
|
@ -133,7 +133,7 @@ for i in range(29):
|
||||||
counter = 0
|
counter = 0
|
||||||
training = []
|
training = []
|
||||||
|
|
||||||
while(data and counter < 1000):
|
while(data and counter < 2000):
|
||||||
bin_data = reduce(format_input, list(data), [])
|
bin_data = reduce(format_input, list(data), [])
|
||||||
bin_data.reverse()
|
bin_data.reverse()
|
||||||
bin_data = bin_data[16:]
|
bin_data = bin_data[16:]
|
||||||
|
@ -146,14 +146,19 @@ for i in range(29):
|
||||||
#print(training[0])
|
#print(training[0])
|
||||||
# Train the network.
|
# Train the network.
|
||||||
|
|
||||||
model.fit(np.array(training), np.array(target[i]), epochs=5, batch_size=1000)
|
model.fit(np.array(training), np.array(target[i]), epochs=8, batch_size=2000)
|
||||||
#model.train_on_batch(np.array(temp), np.array(target))
|
#model.train_on_batch(np.array(temp), np.array(target))
|
||||||
|
|
||||||
# Used for testing data
|
# Used for testing data
|
||||||
|
|
||||||
with open('data/18.bin', 'rb') as f:
|
for i in range(11, 29):
|
||||||
|
filename = join('/pub/faculty_share/daugher/datafiles/data/', str(i) + '.bin')
|
||||||
|
|
||||||
for i in range(1000):
|
print(i)
|
||||||
|
|
||||||
|
with open('/pub/faculty_share/daugher/datafiles/data/18states.bin', 'rb') as f:
|
||||||
|
|
||||||
|
for i in range(2000):
|
||||||
data = f.read(8)
|
data = f.read(8)
|
||||||
|
|
||||||
data = f.read(8)
|
data = f.read(8)
|
||||||
|
@ -187,29 +192,28 @@ with open('data/18.bin', 'rb') as f:
|
||||||
counter += 1
|
counter += 1
|
||||||
data = f.read(8)
|
data = f.read(8)
|
||||||
|
|
||||||
#print(testing_target)
|
|
||||||
|
|
||||||
# Evaluate accuracy
|
# Evaluate accuracy
|
||||||
|
|
||||||
loss_and_metrics = model.evaluate(np.array(testing),np.array(testing_target), batch_size=1000)
|
loss_and_metrics = model.evaluate(np.array(testing),np.array(testing_target), batch_size=1000)
|
||||||
|
|
||||||
# Generating predictions:
|
# Generating predictions:
|
||||||
|
|
||||||
predictions = model.predict(np.array(testing), batch_size=1000)
|
predictions = model.predict(np.array(testing), batch_size=1000)
|
||||||
|
|
||||||
output = []
|
output = []
|
||||||
|
|
||||||
for p in range(len(predictions)):
|
for p in range(len(predictions)):
|
||||||
if np.argmax(testing_target[p]) < 18:
|
if np.argmax(testing_target[p]) < 18:
|
||||||
output.append(100*((18 - (28 - np.argmax(predictions[p]))) / (18 - np.argmax(testing_target[p]))))
|
output.append(100*((18 - (28 - np.argmax(predictions[p]))) / (18 - np.argmax(testing_target[p]))))
|
||||||
else:
|
else:
|
||||||
output.append(0)
|
output.append(0)
|
||||||
|
|
||||||
#for i in range(len(output)):
|
#for i in range(len(output)):
|
||||||
# print(output[i])
|
# print(output[i])
|
||||||
|
|
||||||
print(np.array(output).mean())
|
print("Percentage possible improvement: ", np.array(output).mean())
|
||||||
|
|
||||||
print(loss_and_metrics)
|
print(model.metrics_names[0], loss_and_metrics[0])
|
||||||
|
|
||||||
print(model.metrics_names)
|
print(model.metrics_names[1], loss_and_metrics[1])
|
||||||
|
|
Reference in a new issue