Statement of Problem

In order to more closely estimate the number of moves that are required from a given game
board state of a 16-piece puzzle to the solution, we construct a neural network. While there are
other, less complicated methods of calculating an estimate answer of how many moves are left,
such as the Manhattan distance method, which we will be using later to weight against the
accuracy of our neural network’s predictions, creating a more accurate estimation system would
prove to be much more useful. The significance of a more accurate estimator could lead to the
development of more accurate path estimators in general, leading to more feasible solutions to
otherwise infeasible problems such as the traveling salesman problem.

Restrictions and Limitations

As stated in the project documentation itself, creating a neural network for estimating the
number of moves left in a 16 piece puzzle is not a good use of a neural network. On top of this
basic limitation of neural networks in general, it should be noted that evaluating the neural
network’s estimations is only possible for states in which we already know the minimum possible
moves to solve. In this sense, rather than trying to bridge between the P and NP problem
spaces (as finding the minimum possible moves for an n-piece puzzle is in the NP space), we
are merely creating an estimator that mimic such a bridge for this specific type of puzzle, which
can only work for up to 28 moves in our case.

Approach

| approached this problem using Python version 3. The neural network was constructed using
the Google TensorFlow backend libraries and Keras. Numpy was also used for some additional
computational functions.

Layers

The neural network was constructed with 1 input layer, 1 output layer, and 2 hidden layers. Here
is a short outline of the layer structure:

1. 240 input neurons, using hyperbolic tangent.

2. 120 neurons, hyperbolic tangent.

3. 60 neurons, hyperbolic tangent.

4. 29 output neurons, sigmoid for our output.



Experiments

When experimenting with the network, | kept the layers the same for all tests. | wanted to make
sure whatever | was doing wasn’t dependent on the overall structure of the network itself. | used
Stochastic Gradient Descent as my optimizer and Mean Squared Error for my loss function.

In training the neural network, | fed a batch of 1000 states for each file (in which | either fed
1000 states or all the states in the current file if there were less. | then experimented with
varying epochs / batch sizes.

Sample Run

Here are some sample runs of the program running both through Jupyter's HTTP server
interface and through VPN on the compute server on a plain Python script.



Jupyter

In [30]:

In [31]:

pos_data = pos data[l:]
state_pos = []

for p in pos_data:
state pos.append(p[1])

testing target pos = reduce(generate pos, pos data, [])
testing target.append(format _man dist(man dist state(state pos, testing target pos)})

counter += 1
data = f.read(8)

#print(testing target)

Evaluating our test data

# Evaluate accuracy

loss_and metrics = model.evaluate(np.array(testing),np.array(testing target), batch size=1800)
# Generating predictions:

predictions = model.predict(np.array(testing), batch_size=1080)

20000/20000 [ ] - ©s 2us/step

output = []

for p in range(len(predictions)):
if np.argmax(testing target[p]) < 18:
output.append(108+((18 - (28 - np.argmax(predictions[p]))) / (18 - np.argmax(testing target[p])}))
else:
output.append(@)

#for 1 in range(len(output)}):
# print(outputfi])

print{np.array(output).mean())
print(loss_and metrics)

print(model.metrics names)

13.4831845238
[0.18453341573476792, 0.0095500001683831211
['loss', 'acc']



Python on compute.cse.tamu.edu

looe/1000 - 13us/step - : 0. - : 0.0000e+00
Epoch 5/5

lo0e/1000 - 13us/step - 5 B - : 0.0000e+00
25

Epoch 1/5

looe/le00 - 12us/step -
Epoch 2/5

loee/1000 - 12us/step -
Epoch 3/5

loee/1e00 - 12us/step -
Epoch 4/5

loee/1000 - 18us/step -
Epoch 5/5

looe/l1ee0 - 13us/step -
26

Epoch 1/5

1000/1000 - 12us/step -
Epoch 2/5

l0060/1000 [ - llus/step -
Epoch 3/5

1000/1000 - llus/step -
Epoch 4/5

l006/1000 [ - 10us/step -
Epoch 5/5

1000/1000 - 18us/step -
27

Epoch 1/5

1080/1000 - 1lus/step -
Epoch 2/5

l1000,/1000 - 18us/step -
Epoch 3/5

lope/1000 - leus/step -
Epoch 4/5

lope/1e00 - lous/step -
Epoch 5/5

lope/1000 - llus/step -
28

Epoch 1/5

loee/1008 [ - 12us/step -
Epoch 2/5

looe/1e00 - 1lus/step -
Epoch 3/5

lo00/1000 - 1lus/step -
Epoch 4/5

looe/1000 - 1lus/step -
Epoch 5/5

l1000/1000 [ = 13us/step -
446342/446342 | - 2s 5us/ste
87.4963046167

[0.21731308226626603, 0.038374161657919237]

['loss*', ‘'acc']

[shadowBt4]@compute ~/CS5CE428/nnd420-private= (19:53:32 12/07/17)




Results & Analysis

First, | ran a test on the default input of my network. | used 1000 states or all states for each file,
5 epochs, and 1000 in a batch. | received varying results each time | ran the program, with very
little consistency. On testing predictions, | would receive higher “improvement values” (we define
percentage improvement in the project documentation to be percentage closer to actual number
of moves versus the manhattan distance estimate) the farther away | got from the higher
number estimates.

| continued to run tests, changing epochs and batch sizes. In one of my final tests, | changed
epochs to 8 and batch size to 2000, here is a full list of the data results from that evaluation:

11

Percentage possible improvement: 131.991744066
loss 0.167936483834

acc 0.0175438595376

12

Percentage possible improvement: 153.83953168
loss 0.169155473757

acc 0.0118801652392

13

Percentage possible improvement:. 91.605

loss 0.167931690812

acc 0.0303999996744

14

Percentage possible improvement: 115.414166667
loss 0.166890135407

acc 0.0186000001617

15

Percentage possible improvement: 98.1758333333
loss 0.168728539348



acc 0.0131000000983

16

Percentage possible improvement:

loss 0.168766576052
acc 0.010100000212

17

Percentage possible improvement:

loss 0.17060739994
acc 0.0102000000887

18

Percentage possible improvement:

loss 0.169354042411
acc 0.00440000006929

19

Percentage possible improvement:

loss 0.171234123409
acc 0.00790000013076

20

Percentage possible improvement:

loss 0.170418299735
acc 0.007200000179

21

Percentage possible improvement:

loss 0.171738886833
acc 0.0229000000283

22

Percentage possible improvement
loss 0.173329897225

34.4588333333

-53.8332380952

-0.692416666667

-29.2496706349

23.3521944444

-31.1126269841

: 9.1381010101



acc 0.00890000014333

23

Percentage possible improvement: -43.6177330447
loss 0.174675036967

acc 0.0130999999936

24

Percentage possible improvement: -3.36664033189
loss 0.176320441067

acc 0.0120000001742

25

Percentage possible improvement: -1.81612357087
loss 0.177039775252

acc 0.00450000000419

26

Percentage possible improvement: 33.477459596
loss 0.174290961027

acc 0.017100000754

27

Percentage possible improvement: 4.31057944833
loss 0.173010015488

acc 0.00779999999795

28

Percentage possible improvement: 30.1904823787
loss 0.174648806453

acc 0.024500000081

Note that | only test 10,000 states, this is to cut down on computation time.



Conclusions

The current model of the neural network that is presented ranges from unstable to almost
unusable in a practical sense. It should be noted that due to the nature of the neurons being
weighted differently, it would make sense that the connections we trained more often (eg: those
with more states, such as the higher number moves left states) would be more influential during
predictions. However, it's worth noting that even when fixing this issue, possibly by manually
weighting the tests per file on something like a 1/1000 scalar, it would not fix the overall issue of
the inconsistency of the network overall.

Future Research

As stated in the conclusion, it would improve the network to have some 1/n type weighting
scheme during training. Additionally, it was brought up to me by a colleague that a possible
reworking of the structure of the layers could prove to be helpful, as the input layer could instead
take 15 16-bit inputs telling the current tile rather than a 240 neuron layer spread out for each
possible occurrence of any 0 to 15 tile piece.

Instructions on running (README)

If you are running the program through the compute.cse.tamu.edu servers, you will need to
make sure you run using the command:

python3 neural_network.py

In order to install the necessary libraries to run the program, you will also need to run these
commands:

wget "https://bootstrap.pypa.io/get-pip.py"
python3 get-pip.py --user

python3 -m pip install --user tensorflow
python3 -m pip install --user keras
python3 -m pip install --user numpy

If you are using a virtual desktop or are logged in on campus somewhere, you should be able to
also view the Jupyter Notebook that is included, which has more detailed comments. You will
just need to install an additional package.



python3 -m pip install --user jupyter
python3 -m notebook nn_puzzle solver.ipynb

In case you are unable to access the notebook, I've included an HTTP version of the notebook
as well.

The Program

from functools import reduce

import numpy as np

from keras.models import Sequential
from keras.layers import Dense

from os.path import join

# Used to format our input binary state.

def format_input(acc, elem):
hex_elem = (elem - (elem >> 4 << 4))
for x in range(16):
if x == hex_elem:
acc.append(1)
else:
acc.append(0)
hex_elem = (elem >> 4) % 16
for x in range(16):
if x == hex_elem:
acc.append(1)
else:
acc.append(0)
return acc

# Calculate Manhattan distance between two points.
def man_dist(x, y):

for a, b in zip(x, y):

a_one, a_two = X

b one, b two =y

return (abs(a_one - b_one) + abs(a_two - b_two))



# Calculate Manhattan distance between each set of two points in a list.

def man_dist_state(x, y):
return sum(man_dist(a, b) for a, b in zip(x, y))

# Used to format the positions we parsed from our binary input.

def format_pos(acc, elem):

hex_elem = (elem[1] - (elem[1] >> 4 << 4))

if hex_elem == @:

acc.append((hex_elem, (3,3)))

else:

acc.append((hex_elem, ((15 - ((elem[@]) * 2)) % 4,int((15 -
((elem[@]) * 2)) / 4))))

hex_elem = (elem[1] >> 4) % 16

if hex_elem ==

acc.append((hex_elem, (3,3)))

else:

acc.append((hex_elem, ((15 - ((elem[@]) * 2 + 1)) % 4,int((15 -
((elem[@]) * 2 + 1)) / 4))))

return acc

# The title of this function is slightly misleading.

# I'm simply generating a list of positions that each

# puzzle piece in the current parsed state SHOULD be at.
# I organize this in order of the pieces as they were

# parsed so the two lists line up perfectly.

def generate_pos(acc, elem):
if(elem[@] == 0):
acc.append((3,3))
else:
acc.append((((elem[@] - 1) % 4), (int((elem[O] - 1)/4))))

return acc

# Used to format our ending Manhattan distance into a format
# that can be compared with our 29 output neurons.

def format_man_dist(elem):



acc = []
for x in range(28, -1, -1):

if x == elem:
acc.append(1)
else:
acc.append(0)

return acc

target = []

for i in range(29):
filename = join('/pub/faculty share/daugher/datafiles/data/' + str(i)
+ 'states.bin')

# Debugging to print the current file from which states are being
parsed.

#print(i)

temp = []

with open(filename, 'rb') as f:

data = f.read(8)
counter = ©

while(data and counter < 2000):
temp.append(format_man_dist(i))

data = f.read(8)
counter += 1

target.append(temp)
#print(target[28][500])
# Sets up a Sequential model, Sequential is all
# that should need to be used for this project,
# considering that it will only be dealing with
# a linear stack of layers of neurons.

model = Sequential()

# Adding layers to the model.



model.add(Dense(units=240, activation="tanh', input_dim=240))
model.add(Dense(units=120, activation="tanh'))
model.add(Dense(units=60, activation='tanh'))
model.add(Dense(units=29, activation='sigmoid'))

# Configure the learning process.

model.compile(optimizer="sgd’,
loss="mean_squared_error"',
metrics=["accuracy'])

for i in range(29):
filename = join('/pub/faculty_share/daugher/datafiles/data/"' + str(i)
+ 'states.bin')

# Debugging to print the current file from which states are being
parsed.
print(i)

with open(filename, 'rb') as f:
data = f.read(8)

counter = 0

training = []

while(data and counter < 2000):
bin_data = reduce(format_input, list(data), [])
bin_data.reverse()
bin_data = bin_data[16:]

training.append(bin_data)

data = f.read(8)
counter += 1

#print(training[0])
# Train the network.

model.fit(np.array(training), np.array(target[i]), epochs=8,
batch_size=2000)
#tmodel.train_on_batch(np.array(temp), np.array(target))



# Used for testing data
for i in range(11, 29):

filename = join('/pub/faculty_share/daugher/datafiles/data/"', str(i)
+ 'states.bin')

print(i)

with open(filename, 'rb') as f:

for i in range(2000):
data = f.read(8)

data = f.read(8)

1]
(W)

counter

testing [1]

testing target []

while(data and counter < 10000):
bin_data = reduce(format_input, list(data), [])
bin_data.reverse()
bin_data = bin_data[16:]
testing.append(bin_data)
pos_data = reduce(format pos, enumerate(list(data)), [])
pos_data.reverse()
pos_data = pos_data[1l:]

state pos = []

for p in pos_data:
state_pos.append(p[1])

testing target _pos = reduce(generate_pos, pos_data, [])

testing target.append(format_man_dist(man_dist_ state(state_pos,
testing_target_pos)))



counter += 1
data = f.read(8)
# Evaluate accuracy

loss_and_metrics =
model.evaluate(np.array(testing),np.array(testing target), batch_size=1000)

# Generating predictions:
predictions = model.predict(np.array(testing), batch_size=1000)
output = []
for p in range(len(predictions)):
if np.argmax(testing_ target[p]) < 18:
output.append(100*((18 - (28 -
np.argmax(predictions[p]))) / (18 - np.argmax(testing_target[p]))))
else:

output.append(@)

#for i in range(len(output)):
# print(output[i])

print("Percentage possible improvement: ", np.array(output).mean())
print(model.metrics_names[@], loss_and_metrics[0])

print(model.metrics_names[1], loss_and_metrics[1])
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