Nice
This commit is contained in:
commit
805a3291ad
5 changed files with 108497 additions and 0 deletions
529
homework_3.ipynb
Normal file
529
homework_3.ipynb
Normal file
|
@ -0,0 +1,529 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# CSCE 470 :: Information Storage and Retrieval :: Texas A&M University :: Fall 2017\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Homework 3 and 4 United Forever: Recommenders and Classification!\n",
|
||||
"\n",
|
||||
"### 200 points [10% of your final grade]\n",
|
||||
"\n",
|
||||
"### Due: November 16, 2017\n",
|
||||
"\n",
|
||||
"*Goals of this homework:* Put your knowledge of recommenders and classifiers to work. \n",
|
||||
"\n",
|
||||
"*Submission Instructions (ecampus):* To submit your homework, rename this notebook as `lastname_firstinitial_hw#.ipynb`. For example, my homework submission would be: `caverlee_j_hw3.ipynb`. Submit this notebook via **ecampus**. Your IPython notebook should be completely self-contained, with the results visible in the notebook. We should not have to run any code from the command line, nor should we have to run your code within the notebook (though we reserve the right to do so)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Part 1: Recommending Movies\n",
|
||||
"\n",
|
||||
"For this first part, we're going to use part of the Movielens 100k dataset. Prior to the Netflix Prize, the Movielens data was **the** most important collection of movie ratings.\n",
|
||||
"\n",
|
||||
"First off, we need to load the data (see the data files in the \"Resources\" tab, including u.user, u.item, and ua.base). Here, we provide you with some helper code to load the data using [Pandas](http://pandas.pydata.org/). Pandas is a nice package for Python data analytics."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style>\n",
|
||||
" .dataframe thead tr:only-child th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: left;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>MovieId</th>\n",
|
||||
" <th>Title</th>\n",
|
||||
" <th>UserId</th>\n",
|
||||
" <th>Rating</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Gender</th>\n",
|
||||
" <th>Occupation</th>\n",
|
||||
" <th>ZipCode</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Toy Story (1995)</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>24</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>technician</td>\n",
|
||||
" <td>85711</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>GoldenEye (1995)</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>24</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>technician</td>\n",
|
||||
" <td>85711</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Four Rooms (1995)</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>24</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>technician</td>\n",
|
||||
" <td>85711</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>Get Shorty (1995)</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>24</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>technician</td>\n",
|
||||
" <td>85711</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>Copycat (1995)</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>24</td>\n",
|
||||
" <td>M</td>\n",
|
||||
" <td>technician</td>\n",
|
||||
" <td>85711</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" MovieId Title UserId Rating Age Gender Occupation ZipCode\n",
|
||||
"0 1 Toy Story (1995) 1 5 24 M technician 85711\n",
|
||||
"1 2 GoldenEye (1995) 1 3 24 M technician 85711\n",
|
||||
"2 3 Four Rooms (1995) 1 4 24 M technician 85711\n",
|
||||
"3 4 Get Shorty (1995) 1 3 24 M technician 85711\n",
|
||||
"4 5 Copycat (1995) 1 3 24 M technician 85711"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"# Load the user data\n",
|
||||
"users_df = pd.read_csv('u.user', sep='|', names=['UserId', 'Age', 'Gender', 'Occupation', 'ZipCode'])\n",
|
||||
"\n",
|
||||
"# Load the movies data: we will only use movie id and title for this homework\n",
|
||||
"movies_df = pd.read_csv('u.item', sep='|', names=['MovieId', 'Title'], usecols=range(2))\n",
|
||||
"\n",
|
||||
"# Load the ratings data: ignore the timestamps\n",
|
||||
"ratings_df = pd.read_csv('ua.base', sep='\\t', names=['UserId', 'MovieId', 'Rating'],usecols=range(3))\n",
|
||||
"\n",
|
||||
"# Working on three different data frames is a pain\n",
|
||||
"# Let us create a single dataset by \"joining\" these three data frames\n",
|
||||
"movie_ratings_df = pd.merge(movies_df, ratings_df)\n",
|
||||
"movielens_df = pd.merge(movie_ratings_df, users_df)\n",
|
||||
"\n",
|
||||
"movielens_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Part 1a. Let's Explore the Data [20 points]\n",
|
||||
"\n",
|
||||
"Before we get to the actual task of building our recommender, let's familiarize ourselves with the Movielens data.\n",
|
||||
"\n",
|
||||
"Pandas is really nice, since it let's us do simple aggregates. For example, we can find the top-10 movies with the most ratings like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print movielens_df.groupby('Title').size().order(ascending=False)[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Top-10 movies\n",
|
||||
"OK, can you find the top-10 highest-rated movies? "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Most polarizing movies\n",
|
||||
"Some movies draw a mixed reaction from fans -- where some people love them and some people hate them. Let's look for such *polarizing* movies that have lots of high ratings and lots of low ratings. \n",
|
||||
"\n",
|
||||
"For this part, let's define a **polarizing movie** as one meeting both of the following conditions:\n",
|
||||
"\n",
|
||||
"- The count of ratings that are 2, 3, or 4 < the count of ratings that are 1 or 5\n",
|
||||
"- |The count of 1 ratings - the count of 5 ratings| < 0.3 * Max(count of 1 ratings, count of 5 ratings)\n",
|
||||
"\n",
|
||||
"For example, a movie with ratings like:\n",
|
||||
"- 1 star = 100 ratings\n",
|
||||
"- 2 stars = 10 ratings \n",
|
||||
"- 3 stars = 10 ratings\n",
|
||||
"- 4 stars = 10 ratings\n",
|
||||
"- 5 stars = 80\n",
|
||||
"\n",
|
||||
"meets both of our conditions, since 10 + 10 + 10 < 100 + 80 (condition 1) and |100-80| < 0.3 * Max(100,80)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"## your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Part 1b: Find the Baseline ratings [30 points]\n",
|
||||
"\n",
|
||||
"Now let's find some estimated baseline ratings. Recall that the baseline rating for a user x on item i = the overall average rating + item bias for i + user bias for x. \n",
|
||||
"\n",
|
||||
"For the part, you should find the baseline ratings for several of our user/movie pairs.\n",
|
||||
"\n",
|
||||
"Baseline rating for user 1 for movie 155:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"## your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Baseline rating for user 6 for movie 492:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"## your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Baseline rating for user 21 for movie 164:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"## your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Part 1c. Please help me make a recommendation decision! [50 points]\n",
|
||||
"Suppose you're trying to recommend a movie to my friend Ellen (User 24). You are trying to decide between two movies:\n",
|
||||
"\n",
|
||||
"- Clueless (367); or\n",
|
||||
"- To Kill a Mockingbird (427) \n",
|
||||
"\n",
|
||||
"To build your recommender, you have many possibilities, including:\n",
|
||||
"\n",
|
||||
"1. Baseline estimate rating b_xi \n",
|
||||
"2. User-user collaborative filtering \n",
|
||||
"3. Item-item collaborative filtering\n",
|
||||
"4. Latent factor model\n",
|
||||
"5. Some other awesome methods ...\n",
|
||||
"\n",
|
||||
"First off, please make your best guess using the baseline rating estimate approach. Your output should like like:\n",
|
||||
"\n",
|
||||
"movie 367, rating: 2\n",
|
||||
"\n",
|
||||
"movie 427, rating: 3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# your code for your baseline recommendation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now, update your baseline approach by incorporating item-item collaborative filtering. You have many design choices here (e.g., number of neighbors k, etc.). Do your best to make a good recommendation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# your code here for augmenting baseline with item-item CF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### BONUS: \n",
|
||||
"Can you use a latent factor model to create a new recommendation method? You can try using something like numpy.linalg.svd(...). [here's an example](http://www.frankcleary.com/svd/) and [here's another one](https://alyssaq.github.io/2015/20150426-simple-movie-recommender-using-svd/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# your code here"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Part 2: Classification with Yelp review data\n",
|
||||
"\n",
|
||||
"For this part, given a Yelp review, your task is to implement a classifier to predict if the business category of this review is \"food-relevant\" or not, **only based on the review text**. The data is from the [Yelp Dataset Challenge](https://www.yelp.com/dataset_challenge).\n",
|
||||
"\n",
|
||||
"## Build the training data\n",
|
||||
"\n",
|
||||
"First, you will need to download this data file as your training data: [training_data.json](https://drive.google.com/open?id=0B_13wIEAmbQMdzBVTndwenoxQlk) \n",
|
||||
"\n",
|
||||
"The training data file includes 40,000 Yelp reviews. Each line is a json-encoded review, and **you should only focus on the \"text\" field**. You should tokenize the review text by using the regular expression \"\\W+\". So something like wordlist = re.split('\\W+', text). Do NOT remove stop words. **Do casefolding but no stemming**.\n",
|
||||
"\n",
|
||||
"The label (class) information of each review is in the \"label\" field. It is **either \"Food-relevant\" or \"Food-irrelevant\"**.\n",
|
||||
"\n",
|
||||
"## Testing data\n",
|
||||
"\n",
|
||||
"We provide 100 yelp reviews here: [testing_data.json](https://drive.google.com/open?id=0B_13wIEAmbQMbXdyTkhrZDN4Wms). The testing data file has the same format as the training data file. Again, you can get the label informaiton in the \"label\" field. Only use it when you evalute your classifiers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Build your Rocchio classifier [60 points]\n",
|
||||
"\n",
|
||||
"In this part, your job is to implement a Rocchio classifier for \"food-relevant vs. food-irrelevant\". You need to aggregate all the reviews of each class, and find the center. **Use the normalized raw term frequency**.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### What to report\n",
|
||||
"\n",
|
||||
"* For the entire testing dataset, report the overall accuracy.\n",
|
||||
"* For the class \"Food-relevant\", report the precision and recall.\n",
|
||||
"* For the class \"Food-irrelevant\", report the precision and recall.\n",
|
||||
"\n",
|
||||
"We will also grade on the quality of your code. So make sure that your code is clear and readable."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Build the Rocchio classifier\n",
|
||||
"# Insert as many cells as you want"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Apply your classifier on the test data. Report the results.\n",
|
||||
"# Insert as many cells as you want"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Improve your Rocchio classifier [40 points]\n",
|
||||
"\n",
|
||||
"OK, can you improve the quality of your classifier? Your goal here is to experiment with alternative weighting schemes, stopwords, etc. Whatever you like. See if you can improve the quality of your classifier."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Do whatever magic you need to improve your rocchio classifier"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Apply your classifier on the test data. Report the results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Explain your strategies.** What did you do? Did it work? Why? Give us your best analysis of the results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<explanation goes here>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"..."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### BONUS:\n",
|
||||
"\n",
|
||||
"Instead of Rocchio, implement any other classifier you like. How did it work out for you?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# your code here"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 2",
|
||||
"language": "python",
|
||||
"name": "python2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
14773
pagerank.json
Normal file
14773
pagerank.json
Normal file
File diff suppressed because it is too large
Load diff
943
u.user
Normal file
943
u.user
Normal file
|
@ -0,0 +1,943 @@
|
|||
1|24|M|technician|85711
|
||||
2|53|F|other|94043
|
||||
3|23|M|writer|32067
|
||||
4|24|M|technician|43537
|
||||
5|33|F|other|15213
|
||||
6|42|M|executive|98101
|
||||
7|57|M|administrator|91344
|
||||
8|36|M|administrator|05201
|
||||
9|29|M|student|01002
|
||||
10|53|M|lawyer|90703
|
||||
11|39|F|other|30329
|
||||
12|28|F|other|06405
|
||||
13|47|M|educator|29206
|
||||
14|45|M|scientist|55106
|
||||
15|49|F|educator|97301
|
||||
16|21|M|entertainment|10309
|
||||
17|30|M|programmer|06355
|
||||
18|35|F|other|37212
|
||||
19|40|M|librarian|02138
|
||||
20|42|F|homemaker|95660
|
||||
21|26|M|writer|30068
|
||||
22|25|M|writer|40206
|
||||
23|30|F|artist|48197
|
||||
24|21|F|artist|94533
|
||||
25|39|M|engineer|55107
|
||||
26|49|M|engineer|21044
|
||||
27|40|F|librarian|30030
|
||||
28|32|M|writer|55369
|
||||
29|41|M|programmer|94043
|
||||
30|7|M|student|55436
|
||||
31|24|M|artist|10003
|
||||
32|28|F|student|78741
|
||||
33|23|M|student|27510
|
||||
34|38|F|administrator|42141
|
||||
35|20|F|homemaker|42459
|
||||
36|19|F|student|93117
|
||||
37|23|M|student|55105
|
||||
38|28|F|other|54467
|
||||
39|41|M|entertainment|01040
|
||||
40|38|M|scientist|27514
|
||||
41|33|M|engineer|80525
|
||||
42|30|M|administrator|17870
|
||||
43|29|F|librarian|20854
|
||||
44|26|M|technician|46260
|
||||
45|29|M|programmer|50233
|
||||
46|27|F|marketing|46538
|
||||
47|53|M|marketing|07102
|
||||
48|45|M|administrator|12550
|
||||
49|23|F|student|76111
|
||||
50|21|M|writer|52245
|
||||
51|28|M|educator|16509
|
||||
52|18|F|student|55105
|
||||
53|26|M|programmer|55414
|
||||
54|22|M|executive|66315
|
||||
55|37|M|programmer|01331
|
||||
56|25|M|librarian|46260
|
||||
57|16|M|none|84010
|
||||
58|27|M|programmer|52246
|
||||
59|49|M|educator|08403
|
||||
60|50|M|healthcare|06472
|
||||
61|36|M|engineer|30040
|
||||
62|27|F|administrator|97214
|
||||
63|31|M|marketing|75240
|
||||
64|32|M|educator|43202
|
||||
65|51|F|educator|48118
|
||||
66|23|M|student|80521
|
||||
67|17|M|student|60402
|
||||
68|19|M|student|22904
|
||||
69|24|M|engineer|55337
|
||||
70|27|M|engineer|60067
|
||||
71|39|M|scientist|98034
|
||||
72|48|F|administrator|73034
|
||||
73|24|M|student|41850
|
||||
74|39|M|scientist|T8H1N
|
||||
75|24|M|entertainment|08816
|
||||
76|20|M|student|02215
|
||||
77|30|M|technician|29379
|
||||
78|26|M|administrator|61801
|
||||
79|39|F|administrator|03755
|
||||
80|34|F|administrator|52241
|
||||
81|21|M|student|21218
|
||||
82|50|M|programmer|22902
|
||||
83|40|M|other|44133
|
||||
84|32|M|executive|55369
|
||||
85|51|M|educator|20003
|
||||
86|26|M|administrator|46005
|
||||
87|47|M|administrator|89503
|
||||
88|49|F|librarian|11701
|
||||
89|43|F|administrator|68106
|
||||
90|60|M|educator|78155
|
||||
91|55|M|marketing|01913
|
||||
92|32|M|entertainment|80525
|
||||
93|48|M|executive|23112
|
||||
94|26|M|student|71457
|
||||
95|31|M|administrator|10707
|
||||
96|25|F|artist|75206
|
||||
97|43|M|artist|98006
|
||||
98|49|F|executive|90291
|
||||
99|20|M|student|63129
|
||||
100|36|M|executive|90254
|
||||
101|15|M|student|05146
|
||||
102|38|M|programmer|30220
|
||||
103|26|M|student|55108
|
||||
104|27|M|student|55108
|
||||
105|24|M|engineer|94043
|
||||
106|61|M|retired|55125
|
||||
107|39|M|scientist|60466
|
||||
108|44|M|educator|63130
|
||||
109|29|M|other|55423
|
||||
110|19|M|student|77840
|
||||
111|57|M|engineer|90630
|
||||
112|30|M|salesman|60613
|
||||
113|47|M|executive|95032
|
||||
114|27|M|programmer|75013
|
||||
115|31|M|engineer|17110
|
||||
116|40|M|healthcare|97232
|
||||
117|20|M|student|16125
|
||||
118|21|M|administrator|90210
|
||||
119|32|M|programmer|67401
|
||||
120|47|F|other|06260
|
||||
121|54|M|librarian|99603
|
||||
122|32|F|writer|22206
|
||||
123|48|F|artist|20008
|
||||
124|34|M|student|60615
|
||||
125|30|M|lawyer|22202
|
||||
126|28|F|lawyer|20015
|
||||
127|33|M|none|73439
|
||||
128|24|F|marketing|20009
|
||||
129|36|F|marketing|07039
|
||||
130|20|M|none|60115
|
||||
131|59|F|administrator|15237
|
||||
132|24|M|other|94612
|
||||
133|53|M|engineer|78602
|
||||
134|31|M|programmer|80236
|
||||
135|23|M|student|38401
|
||||
136|51|M|other|97365
|
||||
137|50|M|educator|84408
|
||||
138|46|M|doctor|53211
|
||||
139|20|M|student|08904
|
||||
140|30|F|student|32250
|
||||
141|49|M|programmer|36117
|
||||
142|13|M|other|48118
|
||||
143|42|M|technician|08832
|
||||
144|53|M|programmer|20910
|
||||
145|31|M|entertainment|V3N4P
|
||||
146|45|M|artist|83814
|
||||
147|40|F|librarian|02143
|
||||
148|33|M|engineer|97006
|
||||
149|35|F|marketing|17325
|
||||
150|20|F|artist|02139
|
||||
151|38|F|administrator|48103
|
||||
152|33|F|educator|68767
|
||||
153|25|M|student|60641
|
||||
154|25|M|student|53703
|
||||
155|32|F|other|11217
|
||||
156|25|M|educator|08360
|
||||
157|57|M|engineer|70808
|
||||
158|50|M|educator|27606
|
||||
159|23|F|student|55346
|
||||
160|27|M|programmer|66215
|
||||
161|50|M|lawyer|55104
|
||||
162|25|M|artist|15610
|
||||
163|49|M|administrator|97212
|
||||
164|47|M|healthcare|80123
|
||||
165|20|F|other|53715
|
||||
166|47|M|educator|55113
|
||||
167|37|M|other|L9G2B
|
||||
168|48|M|other|80127
|
||||
169|52|F|other|53705
|
||||
170|53|F|healthcare|30067
|
||||
171|48|F|educator|78750
|
||||
172|55|M|marketing|22207
|
||||
173|56|M|other|22306
|
||||
174|30|F|administrator|52302
|
||||
175|26|F|scientist|21911
|
||||
176|28|M|scientist|07030
|
||||
177|20|M|programmer|19104
|
||||
178|26|M|other|49512
|
||||
179|15|M|entertainment|20755
|
||||
180|22|F|administrator|60202
|
||||
181|26|M|executive|21218
|
||||
182|36|M|programmer|33884
|
||||
183|33|M|scientist|27708
|
||||
184|37|M|librarian|76013
|
||||
185|53|F|librarian|97403
|
||||
186|39|F|executive|00000
|
||||
187|26|M|educator|16801
|
||||
188|42|M|student|29440
|
||||
189|32|M|artist|95014
|
||||
190|30|M|administrator|95938
|
||||
191|33|M|administrator|95161
|
||||
192|42|M|educator|90840
|
||||
193|29|M|student|49931
|
||||
194|38|M|administrator|02154
|
||||
195|42|M|scientist|93555
|
||||
196|49|M|writer|55105
|
||||
197|55|M|technician|75094
|
||||
198|21|F|student|55414
|
||||
199|30|M|writer|17604
|
||||
200|40|M|programmer|93402
|
||||
201|27|M|writer|E2A4H
|
||||
202|41|F|educator|60201
|
||||
203|25|F|student|32301
|
||||
204|52|F|librarian|10960
|
||||
205|47|M|lawyer|06371
|
||||
206|14|F|student|53115
|
||||
207|39|M|marketing|92037
|
||||
208|43|M|engineer|01720
|
||||
209|33|F|educator|85710
|
||||
210|39|M|engineer|03060
|
||||
211|66|M|salesman|32605
|
||||
212|49|F|educator|61401
|
||||
213|33|M|executive|55345
|
||||
214|26|F|librarian|11231
|
||||
215|35|M|programmer|63033
|
||||
216|22|M|engineer|02215
|
||||
217|22|M|other|11727
|
||||
218|37|M|administrator|06513
|
||||
219|32|M|programmer|43212
|
||||
220|30|M|librarian|78205
|
||||
221|19|M|student|20685
|
||||
222|29|M|programmer|27502
|
||||
223|19|F|student|47906
|
||||
224|31|F|educator|43512
|
||||
225|51|F|administrator|58202
|
||||
226|28|M|student|92103
|
||||
227|46|M|executive|60659
|
||||
228|21|F|student|22003
|
||||
229|29|F|librarian|22903
|
||||
230|28|F|student|14476
|
||||
231|48|M|librarian|01080
|
||||
232|45|M|scientist|99709
|
||||
233|38|M|engineer|98682
|
||||
234|60|M|retired|94702
|
||||
235|37|M|educator|22973
|
||||
236|44|F|writer|53214
|
||||
237|49|M|administrator|63146
|
||||
238|42|F|administrator|44124
|
||||
239|39|M|artist|95628
|
||||
240|23|F|educator|20784
|
||||
241|26|F|student|20001
|
||||
242|33|M|educator|31404
|
||||
243|33|M|educator|60201
|
||||
244|28|M|technician|80525
|
||||
245|22|M|student|55109
|
||||
246|19|M|student|28734
|
||||
247|28|M|engineer|20770
|
||||
248|25|M|student|37235
|
||||
249|25|M|student|84103
|
||||
250|29|M|executive|95110
|
||||
251|28|M|doctor|85032
|
||||
252|42|M|engineer|07733
|
||||
253|26|F|librarian|22903
|
||||
254|44|M|educator|42647
|
||||
255|23|M|entertainment|07029
|
||||
256|35|F|none|39042
|
||||
257|17|M|student|77005
|
||||
258|19|F|student|77801
|
||||
259|21|M|student|48823
|
||||
260|40|F|artist|89801
|
||||
261|28|M|administrator|85202
|
||||
262|19|F|student|78264
|
||||
263|41|M|programmer|55346
|
||||
264|36|F|writer|90064
|
||||
265|26|M|executive|84601
|
||||
266|62|F|administrator|78756
|
||||
267|23|M|engineer|83716
|
||||
268|24|M|engineer|19422
|
||||
269|31|F|librarian|43201
|
||||
270|18|F|student|63119
|
||||
271|51|M|engineer|22932
|
||||
272|33|M|scientist|53706
|
||||
273|50|F|other|10016
|
||||
274|20|F|student|55414
|
||||
275|38|M|engineer|92064
|
||||
276|21|M|student|95064
|
||||
277|35|F|administrator|55406
|
||||
278|37|F|librarian|30033
|
||||
279|33|M|programmer|85251
|
||||
280|30|F|librarian|22903
|
||||
281|15|F|student|06059
|
||||
282|22|M|administrator|20057
|
||||
283|28|M|programmer|55305
|
||||
284|40|M|executive|92629
|
||||
285|25|M|programmer|53713
|
||||
286|27|M|student|15217
|
||||
287|21|M|salesman|31211
|
||||
288|34|M|marketing|23226
|
||||
289|11|M|none|94619
|
||||
290|40|M|engineer|93550
|
||||
291|19|M|student|44106
|
||||
292|35|F|programmer|94703
|
||||
293|24|M|writer|60804
|
||||
294|34|M|technician|92110
|
||||
295|31|M|educator|50325
|
||||
296|43|F|administrator|16803
|
||||
297|29|F|educator|98103
|
||||
298|44|M|executive|01581
|
||||
299|29|M|doctor|63108
|
||||
300|26|F|programmer|55106
|
||||
301|24|M|student|55439
|
||||
302|42|M|educator|77904
|
||||
303|19|M|student|14853
|
||||
304|22|F|student|71701
|
||||
305|23|M|programmer|94086
|
||||
306|45|M|other|73132
|
||||
307|25|M|student|55454
|
||||
308|60|M|retired|95076
|
||||
309|40|M|scientist|70802
|
||||
310|37|M|educator|91711
|
||||
311|32|M|technician|73071
|
||||
312|48|M|other|02110
|
||||
313|41|M|marketing|60035
|
||||
314|20|F|student|08043
|
||||
315|31|M|educator|18301
|
||||
316|43|F|other|77009
|
||||
317|22|M|administrator|13210
|
||||
318|65|M|retired|06518
|
||||
319|38|M|programmer|22030
|
||||
320|19|M|student|24060
|
||||
321|49|F|educator|55413
|
||||
322|20|M|student|50613
|
||||
323|21|M|student|19149
|
||||
324|21|F|student|02176
|
||||
325|48|M|technician|02139
|
||||
326|41|M|administrator|15235
|
||||
327|22|M|student|11101
|
||||
328|51|M|administrator|06779
|
||||
329|48|M|educator|01720
|
||||
330|35|F|educator|33884
|
||||
331|33|M|entertainment|91344
|
||||
332|20|M|student|40504
|
||||
333|47|M|other|V0R2M
|
||||
334|32|M|librarian|30002
|
||||
335|45|M|executive|33775
|
||||
336|23|M|salesman|42101
|
||||
337|37|M|scientist|10522
|
||||
338|39|F|librarian|59717
|
||||
339|35|M|lawyer|37901
|
||||
340|46|M|engineer|80123
|
||||
341|17|F|student|44405
|
||||
342|25|F|other|98006
|
||||
343|43|M|engineer|30093
|
||||
344|30|F|librarian|94117
|
||||
345|28|F|librarian|94143
|
||||
346|34|M|other|76059
|
||||
347|18|M|student|90210
|
||||
348|24|F|student|45660
|
||||
349|68|M|retired|61455
|
||||
350|32|M|student|97301
|
||||
351|61|M|educator|49938
|
||||
352|37|F|programmer|55105
|
||||
353|25|M|scientist|28480
|
||||
354|29|F|librarian|48197
|
||||
355|25|M|student|60135
|
||||
356|32|F|homemaker|92688
|
||||
357|26|M|executive|98133
|
||||
358|40|M|educator|10022
|
||||
359|22|M|student|61801
|
||||
360|51|M|other|98027
|
||||
361|22|M|student|44074
|
||||
362|35|F|homemaker|85233
|
||||
363|20|M|student|87501
|
||||
364|63|M|engineer|01810
|
||||
365|29|M|lawyer|20009
|
||||
366|20|F|student|50670
|
||||
367|17|M|student|37411
|
||||
368|18|M|student|92113
|
||||
369|24|M|student|91335
|
||||
370|52|M|writer|08534
|
||||
371|36|M|engineer|99206
|
||||
372|25|F|student|66046
|
||||
373|24|F|other|55116
|
||||
374|36|M|executive|78746
|
||||
375|17|M|entertainment|37777
|
||||
376|28|F|other|10010
|
||||
377|22|M|student|18015
|
||||
378|35|M|student|02859
|
||||
379|44|M|programmer|98117
|
||||
380|32|M|engineer|55117
|
||||
381|33|M|artist|94608
|
||||
382|45|M|engineer|01824
|
||||
383|42|M|administrator|75204
|
||||
384|52|M|programmer|45218
|
||||
385|36|M|writer|10003
|
||||
386|36|M|salesman|43221
|
||||
387|33|M|entertainment|37412
|
||||
388|31|M|other|36106
|
||||
389|44|F|writer|83702
|
||||
390|42|F|writer|85016
|
||||
391|23|M|student|84604
|
||||
392|52|M|writer|59801
|
||||
393|19|M|student|83686
|
||||
394|25|M|administrator|96819
|
||||
395|43|M|other|44092
|
||||
396|57|M|engineer|94551
|
||||
397|17|M|student|27514
|
||||
398|40|M|other|60008
|
||||
399|25|M|other|92374
|
||||
400|33|F|administrator|78213
|
||||
401|46|F|healthcare|84107
|
||||
402|30|M|engineer|95129
|
||||
403|37|M|other|06811
|
||||
404|29|F|programmer|55108
|
||||
405|22|F|healthcare|10019
|
||||
406|52|M|educator|93109
|
||||
407|29|M|engineer|03261
|
||||
408|23|M|student|61755
|
||||
409|48|M|administrator|98225
|
||||
410|30|F|artist|94025
|
||||
411|34|M|educator|44691
|
||||
412|25|M|educator|15222
|
||||
413|55|M|educator|78212
|
||||
414|24|M|programmer|38115
|
||||
415|39|M|educator|85711
|
||||
416|20|F|student|92626
|
||||
417|27|F|other|48103
|
||||
418|55|F|none|21206
|
||||
419|37|M|lawyer|43215
|
||||
420|53|M|educator|02140
|
||||
421|38|F|programmer|55105
|
||||
422|26|M|entertainment|94533
|
||||
423|64|M|other|91606
|
||||
424|36|F|marketing|55422
|
||||
425|19|M|student|58644
|
||||
426|55|M|educator|01602
|
||||
427|51|M|doctor|85258
|
||||
428|28|M|student|55414
|
||||
429|27|M|student|29205
|
||||
430|38|M|scientist|98199
|
||||
431|24|M|marketing|92629
|
||||
432|22|M|entertainment|50311
|
||||
433|27|M|artist|11211
|
||||
434|16|F|student|49705
|
||||
435|24|M|engineer|60007
|
||||
436|30|F|administrator|17345
|
||||
437|27|F|other|20009
|
||||
438|51|F|administrator|43204
|
||||
439|23|F|administrator|20817
|
||||
440|30|M|other|48076
|
||||
441|50|M|technician|55013
|
||||
442|22|M|student|85282
|
||||
443|35|M|salesman|33308
|
||||
444|51|F|lawyer|53202
|
||||
445|21|M|writer|92653
|
||||
446|57|M|educator|60201
|
||||
447|30|M|administrator|55113
|
||||
448|23|M|entertainment|10021
|
||||
449|23|M|librarian|55021
|
||||
450|35|F|educator|11758
|
||||
451|16|M|student|48446
|
||||
452|35|M|administrator|28018
|
||||
453|18|M|student|06333
|
||||
454|57|M|other|97330
|
||||
455|48|M|administrator|83709
|
||||
456|24|M|technician|31820
|
||||
457|33|F|salesman|30011
|
||||
458|47|M|technician|Y1A6B
|
||||
459|22|M|student|29201
|
||||
460|44|F|other|60630
|
||||
461|15|M|student|98102
|
||||
462|19|F|student|02918
|
||||
463|48|F|healthcare|75218
|
||||
464|60|M|writer|94583
|
||||
465|32|M|other|05001
|
||||
466|22|M|student|90804
|
||||
467|29|M|engineer|91201
|
||||
468|28|M|engineer|02341
|
||||
469|60|M|educator|78628
|
||||
470|24|M|programmer|10021
|
||||
471|10|M|student|77459
|
||||
472|24|M|student|87544
|
||||
473|29|M|student|94708
|
||||
474|51|M|executive|93711
|
||||
475|30|M|programmer|75230
|
||||
476|28|M|student|60440
|
||||
477|23|F|student|02125
|
||||
478|29|M|other|10019
|
||||
479|30|M|educator|55409
|
||||
480|57|M|retired|98257
|
||||
481|73|M|retired|37771
|
||||
482|18|F|student|40256
|
||||
483|29|M|scientist|43212
|
||||
484|27|M|student|21208
|
||||
485|44|F|educator|95821
|
||||
486|39|M|educator|93101
|
||||
487|22|M|engineer|92121
|
||||
488|48|M|technician|21012
|
||||
489|55|M|other|45218
|
||||
490|29|F|artist|V5A2B
|
||||
491|43|F|writer|53711
|
||||
492|57|M|educator|94618
|
||||
493|22|M|engineer|60090
|
||||
494|38|F|administrator|49428
|
||||
495|29|M|engineer|03052
|
||||
496|21|F|student|55414
|
||||
497|20|M|student|50112
|
||||
498|26|M|writer|55408
|
||||
499|42|M|programmer|75006
|
||||
500|28|M|administrator|94305
|
||||
501|22|M|student|10025
|
||||
502|22|M|student|23092
|
||||
503|50|F|writer|27514
|
||||
504|40|F|writer|92115
|
||||
505|27|F|other|20657
|
||||
506|46|M|programmer|03869
|
||||
507|18|F|writer|28450
|
||||
508|27|M|marketing|19382
|
||||
509|23|M|administrator|10011
|
||||
510|34|M|other|98038
|
||||
511|22|M|student|21250
|
||||
512|29|M|other|20090
|
||||
513|43|M|administrator|26241
|
||||
514|27|M|programmer|20707
|
||||
515|53|M|marketing|49508
|
||||
516|53|F|librarian|10021
|
||||
517|24|M|student|55454
|
||||
518|49|F|writer|99709
|
||||
519|22|M|other|55320
|
||||
520|62|M|healthcare|12603
|
||||
521|19|M|student|02146
|
||||
522|36|M|engineer|55443
|
||||
523|50|F|administrator|04102
|
||||
524|56|M|educator|02159
|
||||
525|27|F|administrator|19711
|
||||
526|30|M|marketing|97124
|
||||
527|33|M|librarian|12180
|
||||
528|18|M|student|55104
|
||||
529|47|F|administrator|44224
|
||||
530|29|M|engineer|94040
|
||||
531|30|F|salesman|97408
|
||||
532|20|M|student|92705
|
||||
533|43|M|librarian|02324
|
||||
534|20|M|student|05464
|
||||
535|45|F|educator|80302
|
||||
536|38|M|engineer|30078
|
||||
537|36|M|engineer|22902
|
||||
538|31|M|scientist|21010
|
||||
539|53|F|administrator|80303
|
||||
540|28|M|engineer|91201
|
||||
541|19|F|student|84302
|
||||
542|21|M|student|60515
|
||||
543|33|M|scientist|95123
|
||||
544|44|F|other|29464
|
||||
545|27|M|technician|08052
|
||||
546|36|M|executive|22911
|
||||
547|50|M|educator|14534
|
||||
548|51|M|writer|95468
|
||||
549|42|M|scientist|45680
|
||||
550|16|F|student|95453
|
||||
551|25|M|programmer|55414
|
||||
552|45|M|other|68147
|
||||
553|58|M|educator|62901
|
||||
554|32|M|scientist|62901
|
||||
555|29|F|educator|23227
|
||||
556|35|F|educator|30606
|
||||
557|30|F|writer|11217
|
||||
558|56|F|writer|63132
|
||||
559|69|M|executive|10022
|
||||
560|32|M|student|10003
|
||||
561|23|M|engineer|60005
|
||||
562|54|F|administrator|20879
|
||||
563|39|F|librarian|32707
|
||||
564|65|M|retired|94591
|
||||
565|40|M|student|55422
|
||||
566|20|M|student|14627
|
||||
567|24|M|entertainment|10003
|
||||
568|39|M|educator|01915
|
||||
569|34|M|educator|91903
|
||||
570|26|M|educator|14627
|
||||
571|34|M|artist|01945
|
||||
572|51|M|educator|20003
|
||||
573|68|M|retired|48911
|
||||
574|56|M|educator|53188
|
||||
575|33|M|marketing|46032
|
||||
576|48|M|executive|98281
|
||||
577|36|F|student|77845
|
||||
578|31|M|administrator|M7A1A
|
||||
579|32|M|educator|48103
|
||||
580|16|M|student|17961
|
||||
581|37|M|other|94131
|
||||
582|17|M|student|93003
|
||||
583|44|M|engineer|29631
|
||||
584|25|M|student|27511
|
||||
585|69|M|librarian|98501
|
||||
586|20|M|student|79508
|
||||
587|26|M|other|14216
|
||||
588|18|F|student|93063
|
||||
589|21|M|lawyer|90034
|
||||
590|50|M|educator|82435
|
||||
591|57|F|librarian|92093
|
||||
592|18|M|student|97520
|
||||
593|31|F|educator|68767
|
||||
594|46|M|educator|M4J2K
|
||||
595|25|M|programmer|31909
|
||||
596|20|M|artist|77073
|
||||
597|23|M|other|84116
|
||||
598|40|F|marketing|43085
|
||||
599|22|F|student|R3T5K
|
||||
600|34|M|programmer|02320
|
||||
601|19|F|artist|99687
|
||||
602|47|F|other|34656
|
||||
603|21|M|programmer|47905
|
||||
604|39|M|educator|11787
|
||||
605|33|M|engineer|33716
|
||||
606|28|M|programmer|63044
|
||||
607|49|F|healthcare|02154
|
||||
608|22|M|other|10003
|
||||
609|13|F|student|55106
|
||||
610|22|M|student|21227
|
||||
611|46|M|librarian|77008
|
||||
612|36|M|educator|79070
|
||||
613|37|F|marketing|29678
|
||||
614|54|M|educator|80227
|
||||
615|38|M|educator|27705
|
||||
616|55|M|scientist|50613
|
||||
617|27|F|writer|11201
|
||||
618|15|F|student|44212
|
||||
619|17|M|student|44134
|
||||
620|18|F|writer|81648
|
||||
621|17|M|student|60402
|
||||
622|25|M|programmer|14850
|
||||
623|50|F|educator|60187
|
||||
624|19|M|student|30067
|
||||
625|27|M|programmer|20723
|
||||
626|23|M|scientist|19807
|
||||
627|24|M|engineer|08034
|
||||
628|13|M|none|94306
|
||||
629|46|F|other|44224
|
||||
630|26|F|healthcare|55408
|
||||
631|18|F|student|38866
|
||||
632|18|M|student|55454
|
||||
633|35|M|programmer|55414
|
||||
634|39|M|engineer|T8H1N
|
||||
635|22|M|other|23237
|
||||
636|47|M|educator|48043
|
||||
637|30|M|other|74101
|
||||
638|45|M|engineer|01940
|
||||
639|42|F|librarian|12065
|
||||
640|20|M|student|61801
|
||||
641|24|M|student|60626
|
||||
642|18|F|student|95521
|
||||
643|39|M|scientist|55122
|
||||
644|51|M|retired|63645
|
||||
645|27|M|programmer|53211
|
||||
646|17|F|student|51250
|
||||
647|40|M|educator|45810
|
||||
648|43|M|engineer|91351
|
||||
649|20|M|student|39762
|
||||
650|42|M|engineer|83814
|
||||
651|65|M|retired|02903
|
||||
652|35|M|other|22911
|
||||
653|31|M|executive|55105
|
||||
654|27|F|student|78739
|
||||
655|50|F|healthcare|60657
|
||||
656|48|M|educator|10314
|
||||
657|26|F|none|78704
|
||||
658|33|M|programmer|92626
|
||||
659|31|M|educator|54248
|
||||
660|26|M|student|77380
|
||||
661|28|M|programmer|98121
|
||||
662|55|M|librarian|19102
|
||||
663|26|M|other|19341
|
||||
664|30|M|engineer|94115
|
||||
665|25|M|administrator|55412
|
||||
666|44|M|administrator|61820
|
||||
667|35|M|librarian|01970
|
||||
668|29|F|writer|10016
|
||||
669|37|M|other|20009
|
||||
670|30|M|technician|21114
|
||||
671|21|M|programmer|91919
|
||||
672|54|F|administrator|90095
|
||||
673|51|M|educator|22906
|
||||
674|13|F|student|55337
|
||||
675|34|M|other|28814
|
||||
676|30|M|programmer|32712
|
||||
677|20|M|other|99835
|
||||
678|50|M|educator|61462
|
||||
679|20|F|student|54302
|
||||
680|33|M|lawyer|90405
|
||||
681|44|F|marketing|97208
|
||||
682|23|M|programmer|55128
|
||||
683|42|M|librarian|23509
|
||||
684|28|M|student|55414
|
||||
685|32|F|librarian|55409
|
||||
686|32|M|educator|26506
|
||||
687|31|F|healthcare|27713
|
||||
688|37|F|administrator|60476
|
||||
689|25|M|other|45439
|
||||
690|35|M|salesman|63304
|
||||
691|34|M|educator|60089
|
||||
692|34|M|engineer|18053
|
||||
693|43|F|healthcare|85210
|
||||
694|60|M|programmer|06365
|
||||
695|26|M|writer|38115
|
||||
696|55|M|other|94920
|
||||
697|25|M|other|77042
|
||||
698|28|F|programmer|06906
|
||||
699|44|M|other|96754
|
||||
700|17|M|student|76309
|
||||
701|51|F|librarian|56321
|
||||
702|37|M|other|89104
|
||||
703|26|M|educator|49512
|
||||
704|51|F|librarian|91105
|
||||
705|21|F|student|54494
|
||||
706|23|M|student|55454
|
||||
707|56|F|librarian|19146
|
||||
708|26|F|homemaker|96349
|
||||
709|21|M|other|N4T1A
|
||||
710|19|M|student|92020
|
||||
711|22|F|student|15203
|
||||
712|22|F|student|54901
|
||||
713|42|F|other|07204
|
||||
714|26|M|engineer|55343
|
||||
715|21|M|technician|91206
|
||||
716|36|F|administrator|44265
|
||||
717|24|M|technician|84105
|
||||
718|42|M|technician|64118
|
||||
719|37|F|other|V0R2H
|
||||
720|49|F|administrator|16506
|
||||
721|24|F|entertainment|11238
|
||||
722|50|F|homemaker|17331
|
||||
723|26|M|executive|94403
|
||||
724|31|M|executive|40243
|
||||
725|21|M|student|91711
|
||||
726|25|F|administrator|80538
|
||||
727|25|M|student|78741
|
||||
728|58|M|executive|94306
|
||||
729|19|M|student|56567
|
||||
730|31|F|scientist|32114
|
||||
731|41|F|educator|70403
|
||||
732|28|F|other|98405
|
||||
733|44|F|other|60630
|
||||
734|25|F|other|63108
|
||||
735|29|F|healthcare|85719
|
||||
736|48|F|writer|94618
|
||||
737|30|M|programmer|98072
|
||||
738|35|M|technician|95403
|
||||
739|35|M|technician|73162
|
||||
740|25|F|educator|22206
|
||||
741|25|M|writer|63108
|
||||
742|35|M|student|29210
|
||||
743|31|M|programmer|92660
|
||||
744|35|M|marketing|47024
|
||||
745|42|M|writer|55113
|
||||
746|25|M|engineer|19047
|
||||
747|19|M|other|93612
|
||||
748|28|M|administrator|94720
|
||||
749|33|M|other|80919
|
||||
750|28|M|administrator|32303
|
||||
751|24|F|other|90034
|
||||
752|60|M|retired|21201
|
||||
753|56|M|salesman|91206
|
||||
754|59|F|librarian|62901
|
||||
755|44|F|educator|97007
|
||||
756|30|F|none|90247
|
||||
757|26|M|student|55104
|
||||
758|27|M|student|53706
|
||||
759|20|F|student|68503
|
||||
760|35|F|other|14211
|
||||
761|17|M|student|97302
|
||||
762|32|M|administrator|95050
|
||||
763|27|M|scientist|02113
|
||||
764|27|F|educator|62903
|
||||
765|31|M|student|33066
|
||||
766|42|M|other|10960
|
||||
767|70|M|engineer|00000
|
||||
768|29|M|administrator|12866
|
||||
769|39|M|executive|06927
|
||||
770|28|M|student|14216
|
||||
771|26|M|student|15232
|
||||
772|50|M|writer|27105
|
||||
773|20|M|student|55414
|
||||
774|30|M|student|80027
|
||||
775|46|M|executive|90036
|
||||
776|30|M|librarian|51157
|
||||
777|63|M|programmer|01810
|
||||
778|34|M|student|01960
|
||||
779|31|M|student|K7L5J
|
||||
780|49|M|programmer|94560
|
||||
781|20|M|student|48825
|
||||
782|21|F|artist|33205
|
||||
783|30|M|marketing|77081
|
||||
784|47|M|administrator|91040
|
||||
785|32|M|engineer|23322
|
||||
786|36|F|engineer|01754
|
||||
787|18|F|student|98620
|
||||
788|51|M|administrator|05779
|
||||
789|29|M|other|55420
|
||||
790|27|M|technician|80913
|
||||
791|31|M|educator|20064
|
||||
792|40|M|programmer|12205
|
||||
793|22|M|student|85281
|
||||
794|32|M|educator|57197
|
||||
795|30|M|programmer|08610
|
||||
796|32|F|writer|33755
|
||||
797|44|F|other|62522
|
||||
798|40|F|writer|64131
|
||||
799|49|F|administrator|19716
|
||||
800|25|M|programmer|55337
|
||||
801|22|M|writer|92154
|
||||
802|35|M|administrator|34105
|
||||
803|70|M|administrator|78212
|
||||
804|39|M|educator|61820
|
||||
805|27|F|other|20009
|
||||
806|27|M|marketing|11217
|
||||
807|41|F|healthcare|93555
|
||||
808|45|M|salesman|90016
|
||||
809|50|F|marketing|30803
|
||||
810|55|F|other|80526
|
||||
811|40|F|educator|73013
|
||||
812|22|M|technician|76234
|
||||
813|14|F|student|02136
|
||||
814|30|M|other|12345
|
||||
815|32|M|other|28806
|
||||
816|34|M|other|20755
|
||||
817|19|M|student|60152
|
||||
818|28|M|librarian|27514
|
||||
819|59|M|administrator|40205
|
||||
820|22|M|student|37725
|
||||
821|37|M|engineer|77845
|
||||
822|29|F|librarian|53144
|
||||
823|27|M|artist|50322
|
||||
824|31|M|other|15017
|
||||
825|44|M|engineer|05452
|
||||
826|28|M|artist|77048
|
||||
827|23|F|engineer|80228
|
||||
828|28|M|librarian|85282
|
||||
829|48|M|writer|80209
|
||||
830|46|M|programmer|53066
|
||||
831|21|M|other|33765
|
||||
832|24|M|technician|77042
|
||||
833|34|M|writer|90019
|
||||
834|26|M|other|64153
|
||||
835|44|F|executive|11577
|
||||
836|44|M|artist|10018
|
||||
837|36|F|artist|55409
|
||||
838|23|M|student|01375
|
||||
839|38|F|entertainment|90814
|
||||
840|39|M|artist|55406
|
||||
841|45|M|doctor|47401
|
||||
842|40|M|writer|93055
|
||||
843|35|M|librarian|44212
|
||||
844|22|M|engineer|95662
|
||||
845|64|M|doctor|97405
|
||||
846|27|M|lawyer|47130
|
||||
847|29|M|student|55417
|
||||
848|46|M|engineer|02146
|
||||
849|15|F|student|25652
|
||||
850|34|M|technician|78390
|
||||
851|18|M|other|29646
|
||||
852|46|M|administrator|94086
|
||||
853|49|M|writer|40515
|
||||
854|29|F|student|55408
|
||||
855|53|M|librarian|04988
|
||||
856|43|F|marketing|97215
|
||||
857|35|F|administrator|V1G4L
|
||||
858|63|M|educator|09645
|
||||
859|18|F|other|06492
|
||||
860|70|F|retired|48322
|
||||
861|38|F|student|14085
|
||||
862|25|M|executive|13820
|
||||
863|17|M|student|60089
|
||||
864|27|M|programmer|63021
|
||||
865|25|M|artist|11231
|
||||
866|45|M|other|60302
|
||||
867|24|M|scientist|92507
|
||||
868|21|M|programmer|55303
|
||||
869|30|M|student|10025
|
||||
870|22|M|student|65203
|
||||
871|31|M|executive|44648
|
||||
872|19|F|student|74078
|
||||
873|48|F|administrator|33763
|
||||
874|36|M|scientist|37076
|
||||
875|24|F|student|35802
|
||||
876|41|M|other|20902
|
||||
877|30|M|other|77504
|
||||
878|50|F|educator|98027
|
||||
879|33|F|administrator|55337
|
||||
880|13|M|student|83702
|
||||
881|39|M|marketing|43017
|
||||
882|35|M|engineer|40503
|
||||
883|49|M|librarian|50266
|
||||
884|44|M|engineer|55337
|
||||
885|30|F|other|95316
|
||||
886|20|M|student|61820
|
||||
887|14|F|student|27249
|
||||
888|41|M|scientist|17036
|
||||
889|24|M|technician|78704
|
||||
890|32|M|student|97301
|
||||
891|51|F|administrator|03062
|
||||
892|36|M|other|45243
|
||||
893|25|M|student|95823
|
||||
894|47|M|educator|74075
|
||||
895|31|F|librarian|32301
|
||||
896|28|M|writer|91505
|
||||
897|30|M|other|33484
|
||||
898|23|M|homemaker|61755
|
||||
899|32|M|other|55116
|
||||
900|60|M|retired|18505
|
||||
901|38|M|executive|L1V3W
|
||||
902|45|F|artist|97203
|
||||
903|28|M|educator|20850
|
||||
904|17|F|student|61073
|
||||
905|27|M|other|30350
|
||||
906|45|M|librarian|70124
|
||||
907|25|F|other|80526
|
||||
908|44|F|librarian|68504
|
||||
909|50|F|educator|53171
|
||||
910|28|M|healthcare|29301
|
||||
911|37|F|writer|53210
|
||||
912|51|M|other|06512
|
||||
913|27|M|student|76201
|
||||
914|44|F|other|08105
|
||||
915|50|M|entertainment|60614
|
||||
916|27|M|engineer|N2L5N
|
||||
917|22|F|student|20006
|
||||
918|40|M|scientist|70116
|
||||
919|25|M|other|14216
|
||||
920|30|F|artist|90008
|
||||
921|20|F|student|98801
|
||||
922|29|F|administrator|21114
|
||||
923|21|M|student|E2E3R
|
||||
924|29|M|other|11753
|
||||
925|18|F|salesman|49036
|
||||
926|49|M|entertainment|01701
|
||||
927|23|M|programmer|55428
|
||||
928|21|M|student|55408
|
||||
929|44|M|scientist|53711
|
||||
930|28|F|scientist|07310
|
||||
931|60|M|educator|33556
|
||||
932|58|M|educator|06437
|
||||
933|28|M|student|48105
|
||||
934|61|M|engineer|22902
|
||||
935|42|M|doctor|66221
|
||||
936|24|M|other|32789
|
||||
937|48|M|educator|98072
|
||||
938|38|F|technician|55038
|
||||
939|26|F|student|33319
|
||||
940|32|M|administrator|02215
|
||||
941|20|M|student|97229
|
||||
942|48|F|librarian|78209
|
||||
943|22|M|student|77841
|
Reference in a new issue