
CPSC–410/611 Machine Problem 3

Machine Problem 3: Page Table Management

Introduction

The objective of this machine problem is to get you started on a demand-paging based virtual
memory system for our kernel. You will study the paging mechanism on the x86 architecture
and set up and initialize the paging system and the page table infrastructure for a single
address space, with an eye towards extending it to multiple processes, and therefore multiple address
spaces, in the future. In this machine problem we limit ourselves to managing small amounts of
memory, which in turn allows us to keep the page table in physical memory. (In a future MP we
will store the page table itself in virtual memory!)
Make sure that you are familiar with the lesson on “Paging on the x86” before starting
work on this Machine Problem.

Page Management in Our Kernel

The memory layout in our kernel looks as follows:

• The total amount of memory in the machine is 32MB.

• The memory layout is such that the first 4MB are reserved for the kernel (code and kernel
data) and are shared by all processes.

• Memory within the first 4MB will be direct-mapped to physical memory. By this we mean
that logical address say 0x01000 will be mapped to physical address 0x01000. Any portion
of the address space that extends beyond 4MB will be freely mapped: every page in this
address range will be mapped to whatever physical frame was available when the page was
allocated.

• The first 1MB contains all global data, memory that is mapped to devices, and other stuff.

• The actual kernel code starts at address 0x100000, i.e. at 1MB.

In this machine problem we limit ourselves to a single process, and therefore a single address
space. When we support multiple address spaces later, the first 4MB of each address space will
map to the same first 4MB of physical memory, and the remaining portion of the address spaces
will map to non-overlapping sets of memory frames.

The paging subsystem represents an address space by an object of class PageTable to the rest
of the kernel. The class PageTable provides support for paging in general (through static variables
and functions) and address spaces. The page table is defined as follows:

class PageTable {

private:

/* THESE MEMBERS ARE COMMON TO ENTIRE PAGING SUBSYSTEM */

static PageTable * current_page_table; /* pointer to currently loaded page table object */

static unsigned int paging_enabled; /* is paging turned on? (i.e. are addresses logical)? */

static FramePool * kernel_mem_pool; /* Frame pool for the kernel memory */

static FramePool * process_mem_pool; /* Frame pool for the process memory */

static unsigned long shared_size; /* size of shared address space */

/* DATA FOR CURRENT PAGE TABLE */

Ver. 2017B Page 1



CPSC–410/611 Machine Problem 3

unsigned long * page_directory; /* where is page directory located? */

public:

static const unsigned int PAGE_SIZE = Machine::FRAME_SIZE; /* in bytes */

static const unsigned int ENTRIES_PER_PAGE = Machine::PT_ENTRIES_PER_PAGE; /* in entries */

static void init_paging(FramePool * _kernel_mem_pool,

FramePool * _process_mem_pool,

const unsigned long _shared_size);

/* Set the global parameters for the paging subsystem. */

PageTable();

/* NOTE1: The PageTable *object* still must be stored somewhere! Probably it is best

to have it on the stack, as there is no memory manager yet...

NOTE2: It may also be simpler to create the first page table *before* paging

has been enabled. */

void load();

/* Makes the given page table the current table. This must be done once during

system startup and whenever the address space is switched (e.g. during

process switching). Loading a page table also flushes the TLB. */

static void enable_paging();

/* Enable paging on the CPU. Typically, a CPU start with paging disabled, and

memory is accessed by addressing physical memory directly. After paging is

enabled, memory is addressed logically. */

static void handle_fault(REGS * _r);

/* The page fault handler. This method will be invoked by the hardware. */

};

We tacitly assume that the address space (and the base address of the direct-mapped portion
of memory) starts at address 0x0. The shared size defines the size of the shared, direct-mapped
portion (i.e. 4MB in our case). The page directory is the address of the page directory page.

The physical memory will be managed by two so-called Frame Pools, which you implemented
in a previous MP. Frame pools support the get and release operations for frames. Each address
space is managed by two such pools (see kernel.C):

• The kernel mem pool, between 2MB and 4MB, manages frames in the shared portion of
memory, typically for use by the kernel for its data structures. Note that the kernel pool is
located in direct-mapped memory; where physical and logical addresses are identical.

• The process mem pool, above 4MB, manages frames in the shared memory portion. (For
details see below.) Note that this pool is located in freely-mapped memory, where logical
addresses are not the same as physical addresses.

After the pools are initialized, the kernel goes through the following steps:

1. It calls the function init paging to set the parameters for the paging subsystem.

2. Once paging is configured, the kernel sets up the first address space by creating a first page
table object1.

1Remember that we don’t have a memory manager yet, and the new operator does not work. Therefore, we create
the first page table object on the stack (we did the same before with the frame pools).

Ver. 2017B Page 2



CPSC–410/611 Machine Problem 3

3. The PageTable constructor sets up the entries in the page directory and the page table. The
page table entries for the shared portion of the memory (i.e. the first 4MB) must be marked
valid (“present” in x86 parlance). The remaining pages must be managed explicitly. (For
more details see below.) NOTE: The constructor will need to grab a frame for the page
directory; so make sure that you have access to a configured frame pool before you initialize
the page table. Before returning, the constructor stores all the relevant information in the
page table object.

4. After the page table is created, the kernel loads it into the processor context through the
load() function. The page table is loaded by storing the address of the page directory
into the CR3 register. The hardware, when needing to translate a virtual address into its
corresponding frame, will know to start ”walking” the page tables by getting the address
of the page directory from CR3. During a context switch, the system simply loads the page
directory of the new process to switch the address space.

5. After everything is set up correctly, the kernel switches from physical addressing to logical
addressing by enabling the paging through the enable paging() function. The paging is
easily enabled by setting a particular bit in the CR0 register. Be careful that the page directory
and page table is set up and loaded correctly before you turn on paging!

The essence of this MP is to first set up the page table correctly and then to implement the
method PageTable::handle fault(), which will handle the page-fault exception of the CPU. This
method will look up the appropriate entry in the page table and decide how to handle the page
fault. If there is no physical memory (frame) associated with the page, an available frame is brought
in and the page-table entry is updated. If a new page-table page has to be initialized, a frame is
brought in for that, and the new page table page and the directory are updated accordingly.

Frame Management above the 4MB Boundary

The memory below the 4MB mark will be direct mapped, and requires no additional management
after the initial setup of the page tables. The memory above 4MB will have to be managed. The
memory addressable by a single process in the x86 is 4GB. It is unlikely that a single process will
need that much memory ever. Since we cannot predict which portions of the address space will be
used, we will map the used portions of logical memory to physical memory frames. By default,
memory pages above the 4MB mark have initially no physical memory associated. Whenever such
a page is referenced, a page fault occurs (Exception 14), and a page fault handler takes over.
The page fault handler performs the following steps:

1. It finds a free frame from a common free-frame pool.
2. It allocates this new frame to the process.
3. The page entry is updated accordingly.
4. The page fault handler returns.
5. The CPU then retries the instruction and this time finds the physical-to-virtual mapping

ready to be used in the paging data structures.

Ver. 2017B Page 3



CPSC–410/611 Machine Problem 3

A Note about the First 4MB

Don’t get confused by the fact that the kernel frame pool does not extend across the entire initial
4MB, and ranges from 2MB to 4MB only. The first MB contains the GDT2, the IDT3, video
memory, and other stuff. The second MB contains the kernel code and the stack space. We don’t
want to hand part of the memory to the kernel to store its own data. Nevertheless, do not
forget to initialize the page table to correctly map the entire first 4MB!

Where to store Memory Management Data Structures

Given that we don’t have a memory manager yet, we find ourselves in a bit of a dilemma when
it comes to storing the data structures needed for the memory management. The stack space is
limited, so it has to be used judiciously. A better solution is to request frames from the appropriate
pool and store the data structures there. (The objects themselves, such as the page table object
or the frame pool objects, can of course be stored on the stack. These objects are small, mostly
pointers to data structures that are held elsewhere.)

The page directory and the page table pages can be stored in kernel pool frames; so can the
management information for the process frame pool4.

The management for the kernel frame pool is maintained inside the kernel frame pool itself (we
took care of this in the implementation of the FramePool class). The question now is: Where to
store the management information for the kernel frame pool? This works like a charm, because
this portion of the memory is directly mapped. So nothing bad happens when you turn on paging.

Other Implementation Issues

A few hints that may come in handy for your implementation:

• You enable paging, load the page table, and have access to the faulting address by reading
and writing to the registers CR0, CR2, and CR3. The functions to do this are given in file
paging low.asm and defined in file paging low.H for inclusion in the rest of your C/C++
programs.

• The page table can be represented as an array of page table entries. Each entry has the
following structure:

31 · · · 12 11 · · · 9 8 · · · 7 6 5 4 · · · 3 2 1 0

Page frame Avail Reserved D A Reserved U/S R/W Present

where

Page frame = number of physical frame storing this page
Avail = feel free to use these bits
Reserved = reserved by Intel; do not use!
D = Dirty
A = Accessed
U/S = User or supervisor level
R/W = Read or Read and Write
Present = use bit

2GDT: Global Descriptor Table, the x86 data structure defining characteristics of various memory areas.
3IDT: Interrupt Descriptor Table, the x86 data structure that realizes the interrupt vector table.
4Don’t put it in the process frame pool. Once you turn on paging, you may not be able to find it anymore!

Ver. 2017B Page 4



CPSC–410/611 Machine Problem 3

• A page fault triggers Exception 14. This exception pushes a word with the exception error
code onto the stack, which can be accessed (field err code) in the exception handler through
the register context argument of type REGS. The lower 3 bits of the word are interpreted as
follows:

value bit 2 bit 1 bit 0

0 kernel read page not present
1 user write protection fault

Also, note that the 32-bit address of the address that caused the page fault is stored in register
CR2, and can be read using the function read cr2().

The Assignment

1. Study the lesson “Paging on the x86”.

2. Read K.J.’s tutorial on “Implementing Basic Paging”
(http://www.osdever.net/tutorials/view/implementing-basic-paging) to understand
how to set up basic paging.

3. Read at least the beginning of Tim Robinson’s tutorial “Memory Management 1”
(http://www.osdever.net/tutorials/view/memory-management-1) to understand some of
the intricacies of setting up a memory manager.

4. Implement the functionality defined in file page table.H (and described above) to initialize
and load the page table, and to enable paging. Additional details about how to implement
these routines can be found in K.J.’s tutorial.

5. Hint: Test the routines with a page table for 4MB of memory and 4MB of the memory being
direct-mapped. Because all the memory is direct-mapped, it should all be valid (“present”),
and there is no need to bother with a page-fault handler. Make sure that you can address
memory inside the 4MB boundary. If – after setting up your page table – the program crashes
when you turn on paging, then something is wrong your code to set up the page table.

6. Once you have convinced yourself that the page table is implemented correctly to handle
the direct-mapped memory portion, extend the code to handle more than the 4MB shared
memory. For this, you need to add the following:

(a) The memory beyond the first 4MB will not be direct-mapped, and therefore must be
marked as invalid (“not present”).

(b) A page-fault hander must be implemented and installed, which is called whenever an
invalid page is referenced. The handler checks whether the page is within the limits of
the memory managed by the page table. If so, it locates a frame in the frame pool, maps
the page to it, marks the page as “present”, and returns from the exception.

(c) Keep in mind that we have a two-level page table. A page fault can therefore be caused
by an invalid entry in the page directory as well as an invalid entry in a page table page.
You need to handle both cases correctly for the page fault handler to work.

You should have access to a set of source files, BOCHS environment files, and a makefile that
should make your implementation easier. In particular, the kernel.C file will contain documenta-
tion that describes where to add code an how to proceed about testing the code as you progress
through the machine problem.

Ver. 2017B Page 5

http://www.osdever.net/tutorials/view/implementing-basic-paging
http://www.osdever.net/tutorials/view/memory-management-1


CPSC–410/611 Machine Problem 3

What to Hand In

You are to hand in the following items:

• A ZIP file containing the following files:

1. A design document, called design.pdf (in PDF format) that describes your implemen-
tation of the page table and the page-fault handler.

2. A pair of files, called page table.H and page table.C, which contain the definition and
implementation of the required functions to initialize and enable paging, to construct
the page table, and to handle page faults.

3. a pair of files, called cont frame pool.H and cont frame pool.C, which contain the
definition and implementation of class ContFramePool that you implemented as part of
MP2.

• Any modification to the provided .H file must be well motivated and documented. Under
no circumstances are you to modify the public interface provided by the .H files.
We are using our own test code to check the correctness of your implementations, and we
have to ensure that your code is compatible with our tests.

• Grading of these MPs is a very tedious chore. These handin instructions are meant to mitigate
the difficulty of grading, and to ensure that the grader does not overlook any of your efforts.

• Failure to follow the handin instructions will result in lost points.

Ver. 2017B Page 6


