
CPSC–410/611 Machine Problem 4

Machine Problem 4: Virtual Memory Management and Memory Allocation

Introduction

In this machine problem we complete our memory manager. For this we extend our solution from
previous MPs in three directions:

Part I: We will extend the page table management to support very large numbers and sizes of
address spaces. This is currently not possible because both the page directory and the page
table pages are stored in directly-mapped memory, which is very small. We need to move
the page tables, at least the page table pages, out from the directly-mapped kernel memory
(kernel memory pool) into ”virtual” memory (process memory pool). As you will see, this
will slightly complicate the page table management and the design of the page fault handlers.

Part II: We will prepare the page table to support virtual memory as described in Part III.

Part III: We will implement a simple virtual-memory allocator (similar to the frame pool allocator
in a previous MP) and hook it up to the new and delete operators of C++.

As a result we will have a pretty flexible simple memory management system that we can use for
later machine problems. Most importantly, we will be able to dynamically allocate memory in a
fashion that is familiar to us from standard user-level C++ programming.

Part I: Support for Large Address Spaces

To implement the page table management in the previous machine problem it was sufficient to
store the page table directory page and any page table pages in the directly-mapped frames in the
kernel frame pool. Since the logical address of these frames is identical to their physical address, it
was very easy to manipulate the content of the page table directory and of the page table frames.
This approach works fine when the number of address spaces and the size of the requested memory
is small; otherwise, we very quickly run out of frames in the directly-mapped frame pool.

In this machine problem, we circumvent the size limitations of the directly-mapped memory
by allocating page table pages (and possibly even page table directories if you want) in mapped
memory, i.e. memory above 4MB in our case. These frames are handled by the process frame pool.

Help! My Page Table Pages are in Mapped Memory!

Given a working implementation of a page table in direct-mapped memory, it is pretty straightfor-
ward to move it from directly-mapped memory to mapped memory.

When paging is turned on, the CPU issues logical addresses, and you will have problems working
with the page table when you place it in mapped memory. In particular, you will want to modify
entries in the page directory and page table pages. You know where these are in physical memory,
but the CPU can only issue logical addresses. You can maintain a complicated table that maintains
which logical addresses point to which page directory or page table page. Fortunately, this is not
necessary, as you already have the page table, which that does exactly this mapping for you. You
simply need to find a way to make use of it.

Tim Robinson’s tutorial “Memory Management 1” (http://www.osdever.net/tutorials/
view/memory-management-1) briefly addresses this problem. We will use the trick described by
Robinson: Have the last entry in the page table directory point back to the beginning of the page

Ver. 2017B Page 1

http://www.osdever.net/tutorials/view/memory-management-1
http://www.osdever.net/tutorials/view/memory-management-1

CPSC–410/611 Machine Problem 4

table. This is also called “Recursive Page Table Look-up” and is described in the section blow.
Make sure that you understand the trick. If you don’t, ask. Once you understand this trick, the
rest of the machine problem will take very little time.

Recursive Page Table Look-up

Both the page table directory and the page table pages contain physical addresses. If a logical
address of the form

| X : 10 | Y : 10 | offset : 12 |1

is issued by the CPU, the memory management unit (MMU) will use the first 10 bits (value X)
to index into the page directory (i.e., relative to the Page Directory Base Register) to look up the
Page Directory Entry (PDE). The PDE points to the appropriate page table page. The MMU will
use the second 10 bits (value Y) of the address to index into the page table page pointed to by the
PDE to get the Page Table Entry (PTE). This entry will contain a pointer to the physical frame
that contains the page.

If we set the last entry in the page directory to point to the page directory itself, we can play
a number of interesting tricks. For example, the address below will be resolved by the MMU as
follows:

| 1023 : 10 | 1023 : 10 | offset : 12 |

• The MMU will use the first 10 bits (value 1023) to index into the page directory to look up
the PDE. PDE number 1023 (the last one) points to the page directory itself. The MMU
does not know about this and treats the page directory like any other page table page.

• The MMU then uses the second 10 bits to index into the (supposed) page table page to look
up the PTE. Since the second 10 bits of the address also have value 1023, the resulting PTE
points again to the page directory itself. Again, the MMU does not know about this and treats
the page directory like any frame : It uses the offset to index into the physical frame. This
means that the offset is an index to a byte in the page directory. If the last two bits of the
offset are zero, the offset becomes an index to the (offset DIV 4)’th entry in the page directory.
In this way you can manipulate the page directory if you store it in logical memory. Neat!

Similarly, the address

| 1023 : 10 | X : 10 | Y : 10 | 0 : 2 |

gets processed by the MMU as follows:

• The MMU will use the first 10 bits (value 1023) to index into the page directory to look up
the PDE. PDE number 1023 points to the page directory itself. Just as in the example above
the MMU does not know about this and treats the page directory like any other page table
page.

• The MMU then uses the second 10 bits (value X) to index into the (supposed) page table
page to look up the PTE (which in reality is the Xth PDE). The offset is now used to index
into the (supposed) physical frame, which is in reality the page table page associated with
the Xth directory entry. Therefore, the remaining 12 bits can be used to index into the Yth
entry in the page table page.

1This expression represents a 32-bit value, with the first 10 bits having value X, the following 10 bits having value
Y, and the last 12 bits having value offset.

Ver. 2017B Page 2

CPSC–410/611 Machine Problem 4

The two examples above illustrate how one can manipulate a page directory that is stored in
virtual memory (i.e., not stored in directly-mapped memory in our case) or a page table that is
stored in virtual memory, respectively.

Part II: Preparing class PageTable to handle Virtual Memory Pools

You will modify the class PageTable to support Virtual Memory allocation pools. We describe the
class VMPool in detail in Part III below.

Modifications to Class PageTable

In order to support virtual memory pools, make the following modifications to the page table. (A
new version of the file page table.H is part of the source package. Feel free to use your own file,
just add the two new functions register pool and free page.)

1. Add support for registration of virtual memory pools. In order to do this, the following
function is to be provided:

void PageTable::register pool(VMPool * pool);

The page table object shall maintain a list of registered pools.

2. Add support for region check in page fault handler. Whenever a page fault happens, check
with registered pools to see whether the address is legitimate. This can be done by calling
the function VMPool::is legitimate for each registered pool. If the address is legitimate,
proceed with the page fault. Otherwise, abort.

3. Add support for virtual memory pools to request the release of previously allocated pages.
The following function is to be provided:

void PageTable::free page(unsigned long page no);

If the page is valid, the page table releases the frame and marks the page invalid. Do not
forget to appropriately flush the TLB whenever you mark a page invalid! (see
below)

Page Table Entries and the TLB

In x86 architecture the TLB is not coherent with memory accesses. In simple terms this means
that the TLB is not aware of changes that you make to the page table. Therefore, you must flush
all relevant entries in the TLB (or flush the entire TLB) each time you make a change to the page
table. If you don’t do that, the CPU may use a stale entry in the TLB, and your program will
likely crash in very mysterious ways. The easiest way to flush the (entire) TLB is to reload the
CR3 register (the page table base register) with its current value. The CPU thinks that a new page
table is loaded, and it therefore flushes the TLB. (Note that stale TLB entries were not a problem
in the previous MPs: If an invalid page is marked as valid as part of the page fault, the TLB gets
updated. If we mark valid pages as invalid when we release pages, however, the TLB may not be
updated.)

Ver. 2017B Page 3

CPSC–410/611 Machine Problem 4

Part III: An Allocator for Virtual Memory

In the third part of this machine problem we will design and implement an allocator for virtual
memory. This allocator will be realized in form of the following virtual-memory pool class VMPool:

class VMPool { /* Virtual Memory Pool */

private:

/* -- DEFINE YOUR VIRTUAL MEMORY POOL DATA STRUCTURE(s) HERE. */

public:

VMPool(unsigned long _base_address,

unsigned long _size,

ContFramePool * _frame_pool

PageTable * _page_table);

/* Initializes the data structures needed for the management of this

virtual-memory pool.

_base_address is the logical start address of the pool.

_size is the size of the pool in bytes.

_frame_pool points to the frame pool that provides the virtual

memory pool with physical memory frames.

_page_table points to the page table that maps the logical memory

references to physical addresses. */

unsigned long allocate(unsigned long _size);

/* Allocates a region of _size bytes of memory from the virtual

memory pool. If successful, returns the virtual address of the

start of the allocated region of memory. If fails, returns 0. */

void release(unsigned long _start_address);

/* Releases a region of previously allocated memory. The region

is identified by its start address, which was returned when the

region was allocated. */

bool is_legitimate(unsigned long _address);

/* Returns FALSE if the address is not valid. An address is not valid

if it is not part of a region that is currently allocated. */

};

An address space can have multiple virtual memory pools (created by constructing multiple
objects of class VMPool). Each pool can have multiple regions, which are created by the function
allocate and destroyed by the function release.

Our virtual-memory pool will be a somewhat lazy allocator: Instead of immediately allocating
frames for a newly allocated memory region, the pool will simply “remember” that the region exists
by storing start address and size in a local table. Only when a reference to a memory location inside
the region is made, and a page fault occurs because no frame has been allocated yet, the page table
(this is a separate object) finally allocates a frame and makes the page valid.

In order for the page table object to know about virtual memory pools, we have the pools
register with the page table by calling a function PageTable::register pool(VMPool * pool).
This allows the page table object to maintain a collection (a list or an array) of references to virtual
memory pools. This comes in handy when a page fault occurs, and the page table needs to check
whether the memory reference is legitimate. When a virtual memory region is deallocated (as part
of a call to VMPool::release(), the virtual memory pool informs the page table that any frames
allocated to pages within the region can be freed and that the pages are to be invalidated. For

Ver. 2017B Page 4

CPSC–410/611 Machine Problem 4

this, the virtual memory pool calls the function PageTable::free page(unsigned int page no)

for each page that is to be freed.

Implementation Issues:

There are no limits to how much you can optimize the implementation of your allocator. We want
you to keep the allocator simple! Keep the following points in mind when you design your
virtual memory pool in order to keep the implementation simple.

• Ignore the fact that the function allocate allows for the allocation of arbitrary-sized re-
gions. Instead, always allocate multiples of pages. In this way you won’t have to deal
with fractions of pages. Except for some internal fragmentation, the user will not know the
difference.

• Don’t try to optimize the way how frames are returned to the frame pool. Whenever a virtual
memory pool releases a region, notify the page table that the pages can be released (and any
allocated frames can be freed).

• Keep the implementation of the allocator simple. There is no need to implement a Buddy-
System allocator, for example. A simple list of allocated regions, or something similar, should
suffice (see next point). (Unfortunately, we cannot use the bitmap implementation recom-
mended for the contiguous-frame pool. The bitmap needed to manage a 4GB address space
would be huge.)

• Where to store your list of allocated regions? Feel free to use the first page of the pool to
store an array of region descriptors (base page number and length of a region). This solution
limits the number of regions that you can allocate to less than 512. This should be sufficient
for now.2

• A new virtual memory pool registers with the page table object. In this way, whenever
the page table experiences a page fault, it can check whether memory references are legit-
imate (i.e., they are part of previously allocated regions). The page table checks with the
registered virtual memory pools whether the address is legitimate by calling the function
VMPool::is legitimate for each registered pool. If the address is not declared legitimate
by any pool, the memory reference is invalid, and the kernel aborts.

• At this time we don’t have a backing store yet, and pages cannot be “paged out”. This means
that we can easily run out of memory if a program references lots of pages in the allocated
regions. Don’ worry about this for now. We may add page-level swapping in a later MP.

The Assignment

1. Read Tim Robinson’s tutorial “Memory Management 1” (http://www.osdever.net/tutorials/
view/memory-management-1) to understand some of the intricacies of setting up a memory
manager.

2. (Part I) Extend your page table manager from the previous MP to handle pages in virtual
memory . Use the “recursive page table lookup” scheme described in this handout. Remember
to get your directory frame and the page table page frames from the process frame pool instead
of the kernel frame pool!

2If you want more, have the last entry in the page be a reference to an overflow page with more region descriptors.

Ver. 2017B Page 5

http://www.osdever.net/tutorials/view/memory-management-1
http://www.osdever.net/tutorials/view/memory-management-1

CPSC–410/611 Machine Problem 4

3. Test your implementation of the new page table manager in virtual memory. Towards the end
of file kernel.C you can define or un-define a macro called TEST PAGE TABLE, which controls
whether just the page table is tested, or whether just the VM pools are tested. By default,
this macro is defined, and only the page-table implementation is tested. Once you convince
yourself that your page table implementation works correctly, uncomment the definition of
this macro, and the code will start testing the VM pools.

4. (Part II) Extend your page table manager to (1) handle registration of virtual memory pools,
(2) handle requests to free pages, and (3) check for legitimacy of logical addresses during page
faults.

5. (Part III) Implement a simple virtual memory pool manager as defined in file vm pool.H.
Always allocate multiples of pages at a time. This will simplify your implementation.

You should have access to a set of source files, BOCHS environment files, and a makefile that
should make your implementation easier. In particular, the kernel.C file will contain documenta-
tion that describes where to add code and how to proceed about testing the code as you progress
through the machine problem. The updated interface for the page table is available in page table.H

and the interface for the virtual memory pool manager is available in file vm pool.H.

What to Hand In

You are to hand in a ZIP file, with name mp4.zip, containing the following files:

1. A design document, called design.pdf (in PDF format) that describes your implementation
of the page table and the virtual memory pool.

2. A pair of files, called page table.H and page table.C, which contain the definition and
implementation of the required functions to initialize and enable paging, to construct the
page table, to handle registration of virtual memory pools, and to handle page faults. Any
modification to the provided .H file must be well motivated and documented.

3. A pair of files, called cont frame pool.H and cont frame pool.C, which contain the defini-
tion and implementation of the frame pool. (These two files are for the benefit of the grader
only. Some students have modified the definitions in the previous machine problem, which
has made it difficult for the TA to grade the submissions.)

4. A pair of files, called vm pool.H and vm pool.C, which contain the definition and implemen-
tation of the virtual memory pool. Any modifications to the provided file vm pool.H must be
well motivated and documented.

Note: Pay attention to the capitalization in file names. For example, if we request a file called
file.H, we want the file name to end with a capital H, not a lower-case one. While Windows does
not care about capitalization in file names, other operating systems do. This then causes all kinds
of problems when the TA grades the submission.

Grading of these MPs is a very tedious chore. These handin instructions are meant to mitigate
the difficulty of grading, and to ensure that the grader does not overlook any of your efforts.

Failure to follow the handin instructions will result in lost points.

Ver. 2017B Page 6

