
MP2 Design Document
Alex Huddleston
CSCE 410 – 700

Introduction
For purposes of simplicity and conciseness, I will mostly be talking about how I implemented the 
frame pool using cont_frame_pool.C as included. I’ll go in order from top to bottom of the member 
functions needed and address the data structures separately.

Implementation

Constructor
The constructor starts off in a similar way to simple_frame_pool, as most of the same data structures 
are still in tact for this class. However, things change once we get into allocating multiple info_frames 
per pool. I made a slight adjustment to the bitmap size depending on whether a number of info frames 
was specified, then made further adjustments when considering that the bitmap I used for this project 
was the proposed “2 bits per frame” bitmap, as I felt it was the most convenient and efficient to 
completing this project. The only real modifications here are in ensuring that the number of info frames
needed for the pull is correctly marked as reserved when specifying more than one info frame, and 
ensuring that the pools data structure is initialized correctly, which I will go over more thoroughly in 
the data structures section of this deisgn document.

get_frames()
get_frames() by far took the longest to complete. At first, I figured it would be easy enough to just 
modify the code provided in simple_frame_pool, but I quickly discovered that simple_frame_pool’s 
implementation was not at all a way that I could wrap my head around easily. After a while, my own 
implementation ended up being very similar, but much more drawn out than the one provided.

It was difficult for me to simply adjust what was given for two reasons:
1. I had to account for each frame now accompanying 2 bits in my bitmap rather than just one.
2. I had to account for allocating multiple frames in a contiguous sequence rather than just picking

the first one available.

The final adjustments I made were to updating the bitmap, as I needed to ensure that the first frame in 
the sequence only cleared one bit for its information frame and all sequential frames following it 
cleared both of their information bits.

mark_inaccessible()
I pretty much directly copied this from the simple implementation. Only needed to account for 
checking for 2 bits and adjusting the bitmap_index and mask math according to how my bitmap was 
laid out. Again, this will be addressed in more detail in the data structures section.

release_frames()
While get_frames() took the longest, this function was the trickiest to wrap my head around. Once I 
understood the concept of what I was trying to accomplish, I got to work on making a data structure for
the class that could hold the different pools I would need in order to maintain release_frames() as a 
static function, then I made a member function specific to the object that would be able to release the 
frames needed once that object was identified.



To identify the needed pool, I simply performed a check to see if the frame I needed to release was 
within the bounds of the pool I was currently checking, going through each in my list. Once the correct 
pool was found, I called that object’s release_frames_here() function with the frame needing to be 
released. I followed the instructions pretty straightforwardly from there, you will see that little code is 
changed from what was provided.

needed_info_frames()
This is literally just the formula you provided us, but adjusted from my number of bitmap information 
frames that could fit into one frame.

Data Structures

ContFramePool * pools
For the most part, things remained similar to simple_frame_pool, with one major distinction: the 
inclusion of a ContFramePool pointer called pools. This static member was what allowed me to keep 
track of the separate ContFramePool objects that I had available to me. Initially, I thought I could 
implement this using a vector, but quickly realized my foolish mistake in seeing that the kernel itself 
had limited library options when being compiled. Regardless, since most of the code had been working 
with pointer arrays already, I thought having my own object pointer array would be a fitting addition to 
the class, and initialized it to the size of the object times the size of a frame, since I thought there could 
never be more than FRAME_SIZE number of ContFramePools. I believe in the end that was a bit 
generous, but it served it purpose. 

Bitmap structure
I decided on implementing this project using the “extended bitmap” structure suggested to us in the 
project handout. Seeing as I was now accounting for 2 bits per frame instead of one, I made sure to 
adjust the math accordingly throughout the program, as I knew that now I would only be able to hold 
64MB worth of frames in a single frame if the bitmap were to take one single frame. I also needed to 
make sure that wherever I checked or cleared one bit in the simple pool program, this program needed 
to clear and shift 2 bits at a time (unless I was setting a single bit out of 2 for the sequence header).

Additional Information
It should be noted that I am aware that I may be able to check for 2 bits at a time with the mask 
variable, rather than checking one bit, then shifting over to check the other. I kept the checks the way 
they were to avoid from oversimplifying and messing up somewhere, just a safety measure for myself.

Also, I have a bit of a habit for choosing short variable names over descriptive ones. Wherever I use “i”
it is usually a bitmap_index, and “c” is used as a counter variable for checking contiguous frames. I 
occasionally use “temp” as a temporary bitmap_index, since I need “i” to stay what it was to add it to 
the frame_no if checking for contiguous frames succeeds.


