
CPSC–410/611/613 Machine Problem 1

Machine Problem 1: Getting Started

Introduction

The objective of this machine problem is to test your development environment. You are provided
a simple “kernel”, which essentially prints a welcome text and goes into an infinite loop. You are
to modify the text on the welcome message to print out your name.

The “kernel” source code for this do-nothing kernel consists of a small collection of source files:

kernel.C: This file contains the main entry point for the kernel. For this MP, this is where you
need to apply the modifications in order to have the kernel print out your name after the
welcome message.

start.asm: This assembler file contains the multiboot header, some initial setup, and the call to
the main entry point in the kernel.

utils.H/C: A selection of utility functions, such as memory copy, simple string operations, port
I/O operations, and program termination.

console.H/C: Access to the console video output.

makefile: Used to easily compile everything to generate the kernel.bin file. (There are several
versions of the makefile, targeting different development environments.)

Your task is to modify the provided kernel, compile it, and generate a floppy disk image that will
boot your kernel.

The first step is to setup your development environment, i.e., a place where you will find all
tools necessary to build your kernel.

Step 1: Setup your Development Execution Environment

We will be using VirtualBox to run a fully configured image of Ubuntu Linux with all the devel-
opment environment tools pre-installed. The image is 64-bit, so it is required to have a processor
capable of 64-bit guest OS emulation. Note that the 64-bit requirement does not mean your host
image has to be 64 bit. You can have Windows 7 32-bit and still have a 64-bit processor. If your
machine does not meet the requirements for VirtualBox, you can use machines in the Open Access
Labs. VirtualBox is available for Windows, Linux, and Mac OS environments.

Step 2: Setup your Source Revision Control Environment

You will be required to set up a github repository for this class. at github.tamu.edu. You will
receive information on how to do this. Authentication is done using your netid. If you are not
familiar with github, there are plenty of good tutorials out there.

The history of your git actions is a documentation of your development process. In this MP,
there is nothing much to document: you start by creating a directory for MP1 and adding all the
files you needed there. As you fix problems (e.g., if the provided Makefile did not work in your
environment) and develop code (e.g., change kernel.C to include your name), you commit new
versions of files to the directory. For each action, use meaningful explanations in your commit
messages. Use MP1 as an opportunity to make sure you know how to commit your changes and
push them to your github repository, with commit explanations. Introducing lots of code and lots

Ver. 2017B Page 1

http://github.tamu.edu
http://github.tamu.edu


CPSC–410/611/613 Machine Problem 1

of changes in a single git action is not, in general, a good software practice. For our projects, it is
not an acceptable practice. You need to commit your work (and push it to your remote repository)
often. If the project submission system on eCampus is not working you won’t need to sweat about
proving that you finished the project within the deadline: the git history will prove that you had
concluded it. Your git activity will be used to assess your software development practices
and it will have an impact on your project grade. Be aware that the github history may
also be used as evidence of insufficient independent work.

Step 3: Finally – doing the Assignment

Now you should be ready to change kernel.C:

• Read the provided information under Project Resources on eCampus.

• Setup your development environment.

• Download and unzip the provided code in file MP1 Sources.zip from eCampus to your de-
velopment environment.

• Look at README.TXT

• Work on kernel.C

After modifying the provided kernel file, compile it, and copy the resulting kernel.bin binary
file onto the provided floppy image file, called dev kernel grub.img. The provided zip file contains
a shell command to do this, you invoke it as follows:

> ./copykernel.sh

This shell command mounts the image as a disk, copies the file kernel.bin onto the mounted
disk, and then unmount the disk image. In the past some students had to use a lazy umount to
get things to work, so as usual, when things don’t work, ask around, look around, and find a way
to make it work. Remember to check the course discussion forum, and if you see people stuck with
problems that you solved, share your knowledge.

Now you are ready to run your own kernel. In order to avoid the difficulties of debugging your
code in a bare metal hardware, you are going to run your kernel in an emulated or simulated
environment, on top of your normal development environment. Many emulation or virtualization
environments can be used to accomplish running your “small” kernel on top of the “real” kernel
managing the machine you are using for this project. In the provided development environment is
set up for your to use Bochs. As mentioned before, utilize the makefile to build your kernel binary.
Then call the copy kernel script to copy the kernel.bin onto the boot drive image.

The Bochs Environment

Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++, that runs on
most popular platforms. It includes emulation of the Intel x86 CPU, common I/O devices, and a
custom BIOS. Bochs can be compiled to emulate many different x86 CPUs, from early 386 to the
most recent x86-64 Intel and AMD processors, even those not in the market yet.

The ZIP archive that comes with MP1 also contains a set of files that define the Bochs emulation
environment:

Ver. 2017B Page 2

http://ecampus.tamu.edu
ecampus.tamu.edu
ecampus.tamu.edu


CPSC–410/611/613 Machine Problem 1

dev kernel grub.img: This file contains the image of the boot “floppy disk”. It contains the
GRUB bootloader and a dummy kernel.The boot loader is the first software that runs when
a computer testing and hardware initialization has been done. It loads the kernel and then
transfers control to it.

BIOS-bochs-latest: This file contains the BIOS.The BIOS (more generally known as firmware) is
the code that runs on power-on startup. Its main work is to initialize and test the hardware.
Every particular computer has a BIOS specifically designed for it. The BIOS also provides
basic operations such as I/O until the operating system is ready to take over.

VGABIOS-lpgl-latest: This file contains a basic VGA BIOS to manage the graphics card.

bochsrc.bxrc: This text file contains the configuration of the emulated machine. If bochs is
correctly installed, double-clicking on this file should start the emulator. You can also run
Bochs by invoking the program with the configuration file as an argument, as follows:

bochs -f bochsrc.bxrc

Note: You are not required to use Bochs. If you use a different emulator or a virtual machine
monitor (such as VirtualBox), the virtual machine will be set up differently, and you will not be
using the files described above, except for the floppy image file.

The Bochs Environment with GDB Integration

In its basic form, Bochs is already part of the provided development environment.
You may consider it helpful to use an external debugger (gdb, the GNU debugger) with the

Bochs environment. It would allow you to debug your program more efficiently.
The provided basic Bochs installation has no support for remote debugging. The Project

Resources folder on eCampus contain detailed descriptions of how to install and use Bochs with
support for remote debugging with gdb.

The Assignment

You are to modify the given “kernel” to print out your name on the welcome screen.
For this, you modify the provided file kernel.C. You then compile the source to generate the kernel
executable kernel.bin. Preferably you do this by invoking the make command. You then copy the
kernel onto the provided .img file. After testing your code with the Bochs emulator, you rename
your .img file to mp1.img and compress it into a ZIP file called mp1.zip. You are to turn in the
ZIP file.

What to Hand In

• You are to hand in one file, with name mp1.zip, which contains a single file, named mp1.img.
The latter is the floppy image file that you obtain by copying (replacing) the file kernel.bin

on the provided .img file.

• Grading of these MPs is a very tedious chore. These handin instructions are meant to mitigate
the difficulty of grading, and to ensure that the grader does not overlook any of your efforts.

• Failure to follow the handing instructions will result in lost points.

Ver. 2017B Page 3

http://ecampus.tamu.edu


CPSC–410/611/613 Machine Problem 1

Project Grading Criteria for MP1

• Your kernel boots: 50%.

• Feature completeness and functional correctness: 50%. (This means your kernel prints the
expected welcome message.)

• If you did not follow the github requirement specified above, the penalty is 50%
of the project grade.

Extra Bonus for MP1 - 10 points As you will experience, debugging operating system code
may be tricky. You can position yourself for an easier time later on by working now on setting up
a debugger in your environment.

The Project Resources folder on eCampus has information on how to set up and use Bochs with
support for gdb.

If you succeed in this integration, submit as part of your zip file a document with a short
description of how you accomplished the integration. Also include a picture of your gdb tool in
action.

Helpful Links

[1] https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_gdb.

html

[2] https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_setup.

html

[3] http://bochs.sourceforge.net/doc/docbook/user/debugging-with-gdb.html

[4] http://heim.ifi.uio.no/~inf3150/doc/tips_n_tricks/bochsd.html

[5] http://wiki.yak.net/746

Ver. 2017B Page 4

ecampus.tamu.edu
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ gdb.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ gdb.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ setup.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ setup.html
http://bochs.sourceforge.net/doc/docbook/user/debugging-with-gdb.html
http://heim.ifi.uio.no/~inf3150/doc/tips_n_tricks/bochsd.html
http://wiki.yak.net/746

